CuInSe2 thin-film solar cells are promising materials for photovoltaic devices. One of the main tasks of researchers is to find ways to increase the solar cells efficiency. In this paper we propose an original structure of a thin-film solar cell based on a tandem connection of a photoelectric converter and a thermoelectric layer based on CuInSe2. The photoelectric converter consists of CuInSe2 and CdS layers. A 3D model of the proposed thin-film solar cell was implemented in the COMSOL Multiphysics environment with using the Heat Transfer module. The simulation was carried out taking into account the diurnal and seasonal variations of both the ambient temperature and the power density of the AM1.5 solar spectrum for the geographical coordinates of Minsk. The solar radiation power density of about 500 kW/m2 can be achieved by using concentrators. The temperature pattern and temperature gradients are calculated in each layer of the solar cell without and with the temperature stabilization of the substrate back side as well as without and with the thermal insulation of the substrate ends. Graphs of the temperature gradients of the thermoelectric layer and the temperature variations of the photoelectric converter of the solar cell are given. As a result of the simulation, it is shown how the uneven heating of both the surface of a thin-film solar cell and its layers occur under conditions of diurnal and seasonal variations of both the ambient temperature and the solar radiation power density. Under concentrated solar radiation exposure, the photoelectric converter surface can be heated up to 700 °C without temperature stabilization of the solar cell substrate. The operating temperature of the photoelectric converter was maintained at no more than 2.35 °C in January and at no more than 14.23 °C in July due to the temperature stabilization of the substrate back side of the proposed device. This made it possible to achieve an increase in the output power of the solar cell both by summing the photoand thermoelectric output voltages and by the concentration of solar radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.