Статья посвящена новому, активно развивающемуся направлению современной математики - изучению связи квантовых интегрируемых моделей и исчисления Шуберта для колчанных многообразий. В статье предлагается геометрическая конструкция решений уравнения Янга-Бакстера и алгебр, связанных с ними, которые называются алгебрами Янга-Бакстера. Эти алгебры играют центральную роль в квантовых интегрируемых системах и точно решаемых (интегрируемых) решеточных моделях статистической физики. Мы покажем на примере классической геометрии многообразий Грассмана, как появляется указанная выше связь. Конкретно, мы отождествляем алгебру конволюций, возникающую в эквивариантном исчислении Шуберта, с алгеброй Янга-Бакстера вырождения асимметричной шестивершинной модели, так называемой пятивершинной модели. Мы покажем также, как, используя наши методы, можно построить действие факторов универсальной обертывающей алгебры для алгебры токов $\mathfrak{sl}_2[t]$ (так называемые алгебры типа Шура) на тензорных произведениях ее представлений вычисления $\mathbb{C}^2[t]$. Наконец, мы связываем нашу конструкцию с когомологической алгеброй Холла для колчана $A_1$. Библиография: 125 названий.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.