Currently, heuristic methods based on iterative changing of feasible solutions set provide a perspective tool for generation equipment maintenance scheduling in power systems. Wherein effectiveness of a heuristic method depends significantly on the initial set of possible schedules or in other words quality of the method initialization. In this case, a widely used methodology of building the initial array of solutions on the basis of pseudorandom uniform generation of control variables seems to be only palliative way to access the problem. This paper proposes alternative initialization procedure drawing on the example of generating units maintenance planning with heuristic differential evolution method. The principle of this method is to get initial set of solutions utilizing normal probability distribution to generate pseudorandom deviations from the suboptimal maintenance schedule which is to be preliminarily formed using directed search method. Following this approach allows to improve probabilistic characteristics of resultant maintenance schedule in particular to decrease median value of an objective function and its coefficient of variation, and to maximize probability to get the combination of units outage moments completely suiting operational constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.