A fully analytical approach to the problem of TE wave propagation in an open lossless waveguide filled with Kerr medium is suggested. It is shown that the waveguide supports two physically interesting guided regimes in the focusing case. In each of the regimes, there exists an infinite number of guided waves that do not have linear counterparts. It is also shown that in the defocusing case only one regime arises with a finite number of guided waves; all these solutions have linear counterparts. Numerical illustrations and discussion of the found results are presented.
The paper focuses on a transmission eigenvalue problem for Maxwell’s equations with cubic nonlinearity that describes the propagation of transverse magnetic waves along the boundaries of a dielectric layer filled with nonlinear (Kerr) medium. Using an original approach, it is proved that even for small values of the nonlinearity coefficient, the nonlinear problem has infinitely many nonperturbative solutions (eigenvalues and eigenwaves), whereas the corresponding linear problem always has a finite number of solutions. This fact implies the theoretical existence of a novel type of eigenwaves that do not reduce to the linear ones in the limit in which the nonlinear coefficient reduces to zero. Asymptotic distribution of the eigenvalues is found, periodicity of the eigenfunctions is proved, the exact formula for the period is found, and the zeros of the eigenfunctions are determined.
The paper is concerned with propagation of surface TE waves in a circular nonhomogeneous two-layered dielectric waveguide filled with nonlinear medium. The problem is reduced to the analysis of a
nonlinear integral equation with a kernel in the form of the Green function. The existence of propagating TE waves for chosen nonlinearity (the Kerr law) is proved using the contraction mapping method. Conditions under which k waves can propagate are obtained, and intervals of localization of the corresponding propagation constants are found. For numerical solution of the problem, a method based on solving an auxiliary Cauchy problem (the shooting method) is proposed. In numerical experiment, two types of nonlinearities are considered and compared: the Kerr nonlinearity and nonlinearity with saturation. New propagation regime is found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.