Single-electron transport in the planar structure of colloidal quantum dots of InSb, PbS, CdSe semiconductors was studied using a scanning tunneling microscope. On the current – voltage characteristics, sections of the current dip were observed similar to the Coulomb gap. Qualitative and numerical comparative estimates suggest that one-electron transport and a phenomenon similar to the Coulomb blockade are observed in the structure of the set of quantum dots. When measuring the current-voltage characteristics, the white-light illumination of the sample breaks the Coulomb blockade, and it can be expected that an instrument element based on such a structure will respond to individual photons. In the region of the Coulomb gap, current oscillations with frequencies in the terahertz range are possible.