Apolipoprotein B 3 0 (3 0 ApoB) minisatellite polymorphism was studied in healthy unrelated individuals from the Russian Federation and the Republic of Belarus, in 10 populations from five ethnic groups: Russians, Byelorussians, Adygeis, Kalmyks and Yakuts. The analysis was carried out using PCR and electrophoresis followed by silver staining. Overall, 25 alleles of the 3 0 ApoB minisatellite, ranging from 25 to 55 repeats, were detected. Heterozygosity indices were high and varied from 0.73 to 0.84. The distributions of alleles of this minisatellite in the Caucasoid populations (Russians, Byelorussians and Adygeis) had a bimodal character, whereas that for Mongoloid populations (Kalmyks and Yakuts) had a unimodal distribution. Nei's genetic distances between the populations studied and some reference populations of Europe and Asia were estimated. Despite their allele distribution homogeneity, different East Slavonic ethnic groups were clearly resolved by multidimensional analyses. The East Slavonic and Adygei populations revealed a high similarity with European Caucasoids. The Mongoloid populations (Kalmyks and Yakuts) were considerably different from those of the European Caucasoid populations, but were similar to other Asian Mongoloid populations. The results demonstrate the variability of 3 0 ApoB minisatellite polymorphism not only in distant populations but also, to a certain extent, in genetically relative ones.
A normal polymorphism at three triplet repeat loci (myotonic dystrophy (DM), dentatorubral-pallidoluysian atrophy (DRPLA) and spinocerebellar ataxia type 1 (SCA1)) were examined in healthy unrelated individuals from the Siberian Yakut (Mongoloid) population, the Adygei (Caucasian) population and nine East European populations: populations from Russia (Holmogory, Oshevensk, Kursk, Novgorod, Udmurts, Bashkir), two Ukrainian populations (Lviv and Alchevsk) and one Belarussian. The distribution of alleles for DRPLA and SCA1 were similar for all East-European populations. For the DM locus, East European populations had typical allele distribution profiles with two modes, (CTG) 5 and (CTG) 11 ± 14 , but some differences were found for the Bashkir population where alleles containing 11 ± 14 CTG repeats had relatively higher frequency. The Yakut population had different allele spectra for all types of repeats studied. Higher heterozygosity levels and insignificant differences between expected and observed heterozygosity were found for all tested loci. The latter led us to suggest that the trinucleotide repeat loci analysed are not influenced by selection factors and could be useful for genetic relationship investigations in different populations. European Journal of Human Genetics (2001) 9, 829 ± 835.
Genetic contribution of pre-Slavic populations to gene pools of modern Russia is increasingly relevant, along with genetic footprints of the Golden Horde invasion. The novel genome-wide approaches enable advanced solutions in this field. The study aimed at searching for the footprints of genetic interaction among Finnicspeaking, Slavic and Turkic-speaking populations of Central Russia and Volga Region and their reflection in pharmacogenetic landscape. Modeling ancestral components by ADMIXTURE software and their mapping involved genome-wide genotyping data for 248 individual genomes representing 47 populations of 9 ethnic groups. Of specific ancestral components identified in each of the Finnic-speaking peoples, only Mordovian ancestral components are common for all populations within the studied geographic area, regardless of their linguistic affiliation. Gene pools of Russian populations include 80% of intrinsic component, 19% contribution from Finnic-speaking peoples, and 1% of Central Asian influence. The Tatar gene pool combines all identified ancestral components, including 81% contribution from Finnic-speaking peoples and only 12% of Central Asian influence, which prevents using it as a reference for the assessment of Golden Horde footprints in Russian gene pools. A map of genetic distances from Ryazan Russians based on a panel of 42 pharmacogenetic markers reveals a landscape strikingly independent from the selectively neutral ancestral genomic patterns. For instance, populations of Mordovia, Kaluga, Smolensk, and Kostroma regions are the closest to Ryazan Russians in pharmacogenetic status, whereas populations of Ryazan and Nizhny Novgorod regions have strikingly divergent pharmacogenetic status despite the similarity of the selectively neutral ancestral genomic patterns. These findings confirm the relevance of targeted pharmacogenetic characterization for gene pools of Russia.
Seventeen population groups within the Russian Federation were characterized for the first time using a panel of 15 genetic markers that are used for DNA identification and in forensic medical examinations. The degree of polymorphism and population diversity of microsatellite loci within the Power Plex system (Promega) in Russian populations; the distribution of alleles and genotypes within the populations of six cities and 11 ethnic groups of the Russian Federation; the levels of intra- and interpopulation genetic differentiation of population; genetic relations between populations; and the identification and forensic medical characteristics of the system of markers under study were determined. Significant differences were revealed between the Russian populations and the U.S. reference base that was used recently in the forensic medical examination of the RF. A database of the allelic frequencies of 15 microsatellite loci that are used for DNA identification and forensic medical examination was created; the database has the potential of becoming the reference for performing forensic medical examinations in Russia. The spatial organization of genetic diversity over the panel of the STR markers that are used for DNA identification was revealed. It represents the general regularities of geographical clusterization of human populations over various types of genetic markers. The necessity to take into account a population’s genetic structure during forensic medical examinations and DNA identification of criminal suspects was substantiated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.