A growing variety of microelectronic devices and magnetic field sensors as well as a trend of miniaturization demands the development of low-dimensional magnetic materials and nanostructures. Among them, soft magnetic thin films of Finemet alloys are appropriate materials for sensor and actuator devices. Therefore, one of the important directions of the research is the optimization of thin film magnetic properties. In this study, the structural transformations of the Fe73.5Nb3Cu1Si13.5B9 and Fe72.5Nb1.5Mo2Cu1.1Si14.2B8.7 films of 100, 150 and 200 nm thicknesses were comparatively analyzed together with their magnetic properties and magnetic anisotropy. The thin films were prepared using the ion-plasma sputtering technique. The crystallization process was studied by certified X-ray diffraction (XRD) methods. The kinetics of crystallization was observed due to the temperature X-ray diffraction (TDX) analysis. Magnetic properties of the films were studied by the magneto-optical Kerr microscopy. Based on the TDX data the delay of the onset crystallization of the films with its thickness decreasing was shown. Furthermore, the onset crystallization of the 150 and 200 nm films began at the temperature of about 400–420 °C showing rapid grain growth up to the size of 16–20 nm. The best magnetic properties of the films were formed after crystallization after the heat treatment at 350–400 °C when the stress relaxation took place.
A study of the heat treatment effect on the structure and magnetic properties of the amorphous and nanocrystalline Finemet-type thin films of the compositions Fe 73.9 Si 13.2 B 8.9 Nb 3 Cu 1 and Fe 72.5 Si 14.2 B 8.7 Nb 2 Mo 1.5 Cu 1.1 were performed by means of X-ray diffraction, magneto-optical Kerr-microscopy, and magnetic properties measurement system. The heat treatment leads to magnetic anisotropy decreasing as a result of crystallization processes, which are heavily dependent on the alloy's composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.