HIV-1 and other retroviruses exit infected cells by budding from the plasma membrane, a process requiring membrane fission. The primary late assembly (L) domain in the p6 region of HIV-1 Gag mediates the detachment of the virion by recruiting host Tsg101, a component of the class E vacuolar protein sorting (Vps) machinery. We now show that HIV Gag p6 contains a second region involved in L domain function that binds AIP1, a homolog of the yeast class E Vps protein Bro1. Further, AIP1 interacts with Tsg101 and homologs of a subunit of the yeast class E Vps protein complex ESCRT-III. AIP1 also binds to the L domain in EIAV p9, and this binding correlates perfectly with L domain function. These observations identify AIP1 as a component of the viral budding machinery, which serves to link a distinct region in the L domain of HIV-1 p6 and EIAV p9 to ESCRT-III.
The endosomal sorting complex ESCRT-III, which is formed by the structurally related CHMP proteins, is engaged by HIV-1 to promote viral budding. Here we show that progressive truncations into the C-terminal acidic domains of CHMP proteins trigger an increasingly robust anti-HIV budding activity. Together with biochemical evidence for specific intramolecular interactions between the basic and acidic halves of CHMP3 and CHMP4B, these results suggest that the acidic domains are autoinhibitory. The acidic half of CHMP3 also interacts with the endosome-associated ubiquitin isopeptidase AMSH, and the coexpression of AMSH or its CHMP3-binding domain converts wild-type CHMP3 into a potent inhibitor of HIV-1 release. Point mutations in CHMP3 that prevent binding to AMSH abrogate this effect, suggesting that binding to AMSH relieves the autoinhibition of CHMP3. Collectively, our results indicate that CHMP proteins are regulated through an autoinhibitory switch mechanism that allows tight control of ESCRT-III assembly.AMSH ͉ endosomal sorting machinery ͉ viral budding
To exit infected cells, human immunodeficiency virus type 1 (HIV-1) exploits the vacuolar protein-sorting pathway by engaging Tsg101 and ALIX through PTAP and LYPx n L late assembly (L) domains. In contrast, less-complex retroviruses often use PPxY L domains to recruit Nedd4 family ubiquitin ligases. Although HIV-1 Gag lacks PPxY motifs, we now show that the budding of various HIV-1 L-domain mutants is dramatically enhanced by ectopic Nedd4-2s, a native isoform with a truncated C2 domain. The effect of Nedd4-2s on HIV-1 budding required a catalytically active HECT domain and was specific, since other Nedd4 family proteins showed little activity and an unrelated retrovirus was not rescued. The residual C2 domain of Nedd4-2s was critical for the enhancement of HIV-1 budding and for the association of Nedd4-2s with Gag, as reflected by its incorporation into virus-like particles. Interestingly, the incorporation of Nedd4-2s also depended on its active site, indicating that the ability to form a thioester with ubiquitin was required. These data suggest a novel mechanism by which HIV-1 Gag can connect to cellular budding machinery.
Human immunodeficiency virus type 1 (HIV-1) and other retroviruses harbor short peptide motifs in Gag that promote the release of infectious virions. These motifs, known as late assembly (L) domains, recruit a cellular budding machinery that is required for the formation of multivesicular bodies (MVBs). The primary L domain of HIV-1 maps to a PTAP motif in the p6 region of Gag and engages the MVB pathway by binding to Tsg101. Additionally, HIV-1 p6 harbors an auxiliary L domain that binds to the V domain of ALIX, another component of the MVB pathway. We now show that ALIX also binds to the nucleocapsid (NC) domain of HIV-1 Gag and that ALIX and its isolated Bro1 domain can be specifically packaged into viral particles via NC. The interaction with ALIX depended on the zinc fingers of NC, which mediate the specific packaging of genomic viral RNA, but was not disrupted by nuclease treatment. We also observed that HIV-1 zinc finger mutants were defective for particle production and exhibited a similar defect in Gag processing as a PTAP deletion mutant. The effects of the zinc finger and PTAP mutations were not additive, suggesting a functional relationship between NC and p6. However, in contrast to the PTAP deletion mutant, the double mutants could not be rescued by overexpressing ALIX, further supporting the notion that NC plays a role in virus release.Retroviral Gag polyproteins harbor short peptide motifs that promote the detachment of assembled virions from the cell surface and from each other (16,22,24,41,49,50,52). These motifs, which are known as late assembly (L) domains, often remain functional even if moved to a different position within Gag and can be exchanged among unrelated viruses (39, 51). In the case of human immunodeficiency virus type 1 (HIV-1), the primary L domain consists of a conserved P(T/S)AP motif near the beginning of the C-terminal p6 domain of the Gag polyprotein (22,24). The PTAP motif serves as a binding site for the host protein Tsg101, which is required for the release of infectious virions (21,31,47).Tsg101 is a component of the endosomal sorting complex ESCRT-I, which functions in the sorting of ubiquitinated cargo into small vesicles that bud into the lumen of multivesicular bodies (MVBs) (3,23,27). This invagination event is topologically related to retrovirus budding and ultimately serves to deliver transmembrane proteins to lysosomal compartments for degradation. The components of this cellular budding pathway were initially identified in Saccharomyces cerevisiae, where a protein network that includes at least 18 different vacuolar protein-sorting (Vps) proteins is required for the formation of MVBs (3). The absence of any of these gene products causes the formation of an abnormal endosomal structure called the class E compartment (26). The MVB sorting pathway is conserved throughout eukaryotic evolution, and at least one homolog for each of the yeast class E Vps proteins exists in humans (48). Most of the class E Vps proteins participate in the formation of ESCRT-I or of two o...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.