The aim of our study was to assess the efficiency of application of biomodified nitrogen fertilizers for barley, to reveal the sources of nitrogen used for biomass formation with the use of the 15N stable isotope, and to study nitrogen flows in the system of fertilizers–soil–plants–atmosphere. We demonstrated in a model experiment the ability of the plant growth-promoting bacteria Bacillus subtilis Ch-13 to move from the granules of mineral fertilizers to plant roots and to colonize them effectively. The effectiveness of biomodified nitrogen fertilizers for barley, Nur variety, was assessed in a microfield trial. After the application of biomodified nitrogen fertilizers, the accumulation of 15N in the plants increased by 2–5 %, its incorporation in the soil decreased and gaseous losses were decreased by 7 % as compared with the use of the usual forms of fertilizers. The application of biomodified nitrogen fertilizers can be used in agricultural practice as a novel technology to regulate nitrogen flows in the system of fertilizers–soil–plants–atmosphere.
A b s t r a c tAbundant pathogens which attack seed and food potato tubers are a serious problem of the modern potato growing that causes significant losses during storage. Regular use of chemical fungicides and agrochemicals has led to emergence of resistance and an increased aggressiveness of plant pathogenic microorganisms. New fungal and bacterial strains and races are also appearing which spread rapidly and cause great damage to agricultural production. In this regard, the biologicals based on biocontrol microorganisms, instead of chemicals, are considered particularly relevant to protect seed and food potatoes from infectious diseases. A genus Pseudomonas belonging to the group of plant-growth promoting rhizobacteria (PGPR) includes species most effectively colonizing higher plants and used as active agents of biological products. Scientific novelty of our work lies in the fact that this study is the first to report the effect of psychrophilic strain Pseudomonas spp. RF13H on the storage of potato tubers. The cold resistant commercial varieties recommended for cultivation in the Leningrad region has been involved. For the first time we estimated the efficiency of tubers protection from a number of pathogenic microorganisms under refrigerated storage, assessed the population dynamics of introduced strain, and visualized the pattern of bacteria distribution and localization on the surface, using fluorescent in situ hybridization and confocal laser scanning microscopy. Using molecular genetic analysis, we have clarified the taxonomic position of several Pseudomonas strains, including psychrophilic strain Pseudomonas spp. RF13H. This strain possessed fungicidal and bactericidal activity against saprogenic and pathogenic microorganisms and was agronomically and physiologically tested. Its growth at low temperatures and production of auxin-like phytohormones were studied. Pseudomonas spp. RF13H influenced positively preservation and biochemical processes in potato tubers under refrigerated storage. Its microcolonies were often localized in different cracks, grooves and recesses on the stored tuber surface that indicated beneficial plant-microbial relations and explained a strategy for tuber colonization at room and low temperature during storage. The occurrence of surface phytopathogenic microorganisms decreased in the presence of Pseudomonas spp. RF13H, and the average number of all type-infected tubers was about 50 % lower among those treated with Pseudomonas spp. RF13H comparing to untreated ones. This trend continued for 3 month storage, i.e. the amount of infected untreated tubers reached 30 % and reduced up to 10-13 %, when treatment with biocontrol strain. At a temperature of 4 С, the bacterial counts was quite stable for 5 months, and then significantly decreased (up to trace quantities) to the end of storage. The bacteria concentrated at the boundaries between the individual cells of tuber periderm and in the places of exudation of biochemical substances that serves as nutrients for bacteria. Introduc-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.