Изучается хроматическое число пространства $(\mathbb R^n)$ с введенной в нем метрикой $l_1$: $\| x\|=\sum_{i=1}^n{|x_i|}$ при запрете $k$ расстояний. Рассматривается минимальное количество цветов, в которые можно окрасить все точки пространства таким образом, чтобы никакие две точки, находящиеся в метрике $l_1$ на одном из запрещенных расстояний друг от друга, не оказались окрашенными в один цвет. Получены оценки на показатели асимптотического роста хроматических чисел при $n\to\infty$. Был использован линейно-алгебраический метод, сводящий оценку хроматических чисел к некоторой выпуклой экстремальной задаче. Численное решение данной задачи позволило получить точные оценки на константы, стоящие в основании асимптотических нижних оценок хроматических чисел многомерных вещественных пространств с несколькими запрещенными расстояниями. Данные оценки оптимальны в рамках предлагаемого метода.
Библиография: 27 названий.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.