Introduction. The processes of structure formation of cement compositions and the development of effective technologies of building materials is an urgent task for building material science. The use of large-scale man-made product of pulp and paper enterprises – osprey as a fibrous filler in organic and mineral compositions is the successful decision of the problem. The paper analyzes the ways of using osprey in the building materials’ production. The aim of the research is to study the osprey influence on the processes of structure formation of cement stone by quantitative x-ray phase analysis.Materials and methods. The organic and mineral compositions were obtained on the basis of portland cement and osprey. The authors studied the compositions’ phase of osprey, portland cement and the processes of cement stone structure formation in organ and mineral compositions by quantitative x-ray phase analysis.Results. The authors determined the compositions’ phase of mineral impurities of osprey, cellulose, cement, cement stone, organic and mineral compositions and two compositions containing 25 and 75% by weight.Discussion and conclusions. The osprey application as a filler in the organic and mineral composition causes inhibition of processes of cement hydration. The presence of osprey in the hardening organic and mineral composition leads to a change in the composition and structure of the cement stone in comparison with the phase composition of the cement stone without additives. The result of these changes is a significant increase in the amount of calcite, waterite and a significant decrease in the amount of portland. The authors establish that the effective joint work of the reinforcing component of the osprey with the cement matrix is possible with a limited amount of osprey in organic and mineral compositions.
Introduction. The need for a more efficient and varied use of waste from the pulp and paper industry dictates the need to search for new directions for the use of such waste in construction materials science technologies.Materials and methods. In the studies the fibre waste of the Perm Cardboard LLC company with a moisture content after washing of 300% by weight was used. Currently, many issues of theory and practice the production of materials from the fibre waste are not entirely solved, resulting in a number of provisions borrowed from the theory of the production of concrete mineral aggregates, as well as the production of pulp and paper industry.Results. Due to its chemical and material composition, the possibility of using the fibre waste in construction materials science technologies as an independent air binder is shown. The studies have established that the initial moisture content of the fibre waste as a binder affects the final quality indicators of a dry material. Thus, the lowest dry material density of 350 kg/m3 is observed at the initial humidity of the mixture in the range of 650% by weight. At a density of 350 kg/m3, the hygroscopicity of the material is 4.3%, the shrinkage from 10 to 25%. The drying time of the product is within 11 hours. A leveling high shrinkage is achieved by introducing light aggregates with a rough surface during the molding process.Discussion and conclusions. The obtained data on the structure, the composition of the fibre waste, as well as the dependence and regularities of the behavior of a highly concentrated dispersed system of the ‘fibre waste-water’ type show the possibility of using the fibre waste for the production of thermal insulation materials, both as a main component and in a composition with aggregates as an independent air binder. At the same time, the final density indicators of thermal insulation products are within the limits established by regulatory documents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.