The control of atmosphere content and concentration of specific gases are important tasks in many industrial processes, agriculture, environmental and medical applications. Thus there is a high demand to develop new advanced materials with enhanced gas sensing characteristics including high gas selectivity. Herein we report the result of a study on the synthesis, characterization, and investigation of gas sensing properties of In2O3–graphene–Cu composite nanomaterials for sensing elements of single-electrode semiconductor gas sensors. The nanocomposite has a closely interconnected and highly defective structure, which is characterized by high sensitivity to various oxidizing and reducing gases and selectivity to NO2. The In2O3-based materials were obtained by sol–gel method, by adding 0–6 wt% of pre-synthesized graphene–Cu powder into In-containing gel before xerogel formation. The graphene–Cu flakes played the role of centers for In2O3 nucleation and then crystal growth terminators. This led to the formation of structural defects, influencing the surface energy state and concentration of free electrons. The concentration of defects increases with the increase of graphene–Cu content from 1 to 4 wt%, which also affects the gas-sensing properties of the nanocomposites. The sensors show a high sensing response to both oxidizing (NO2) and reducing (acetone, ethanol, methane) gases at an optimal working heating current of 91–161 mA (280–510 °C). The sensor with nanocomposite with 4 wt% of graphene–Cu additive showed the highest sensitivity to NO2 (46 ppm) in comparison with other tested gases with an absolute value of sensing response of (− ) 225 mV at a heating current of 131 mA (430 °C) and linear dependence of sensing response to NO2 concentration.
The article discusses the prospects of creating controlled field-effect cathodes based on arrays of columnar oxide niobium nanostructures for field emission displays. Geometrical models of field-emission cathodes and vacuum elements have been developed and investigated. The distribution of the electric field in the vacuum device at various distances between the cathode and the anode, the applied voltages between them, the shape and microgeometry of the cathodes were obtained. The optimal geometric parameters of nanostructured autoelectronic cathodes and matrices of these were calculated based on the simulation. The technological route has been developed for the production of autoelectronic cathode matrices based on arrays of niobium-oxide columnar nanostructures formed by electrochemical anodization of Al/Nb thin-film system. The samples of controlled arrays of autoelectronic cathodes were fabricated and the current-voltage characteristics with interelectrode gap of 2, 5 and 10 μm in various electric modes with change in the electric field strength from 3 to 85 V/μm were studied. At 2 μm gap between the anode and cathode, the emission occurs at minimum threshold voltages, but it is characterized by limited current values. The increasing in the interelectrode gap allows rising the emission currents, however, the threshold voltages increase. In the pulsed mode, the large emission currents are achieved. The threshold voltage of autoelectronic cathode matrices with interelectrode gap of 5 μm was 9.16 V, the maximum currents reached 350 μA at voltage of 22.5 V. In the pulsed mode, the emission arose at 11.06 V, the maximum current reached 1500 μA at 40 V.
Purpose This paper aims to present new technological approaches of manufacturing of micromechanical gyroscope ring-sensitive element based on the nanoporous anodic alumina instead of traditional silicon technology. Simulation and the operation analyses of such elements have been performed. Design/methodology/approach The design of gyroscope represents a sensitive element on a glass substrate; in the center of a ring, there is a permanent magnet in a steel box. The sensitive element is made of profiled nanoporous anodic alumina consisting of an octagonal frame which is connected to a ring in the center with eight N-shaped spokes. The technology of the sensitive element fabrication involves the electrochemical formation of nanoporous anodic alumina substrate given the thickness and porosity and its chemical etching on the element topology. The basic parameters and the operation principle of the nanoporous alumina-sensitive element have been defined by finite element simulation. Findings It is shown that the resonance frequencies of the sensitive element change as functions of the alumina porosity. The main parameters of the nanoporous alumina-sensitive element have been compared with parameters of a silicon-sensitive element. Calculations have shown that the mechanical deformations of the von Mises are approximately lower by two times in the nanoporous alumina-sensitive element. Practical implications High-precision angular rate measurement will be achieved by reducing mechanical and electrical noises practically to zero through careful designing of a ring magnetoelectric gyroscope Originality/value The ring resonator made of nanoporous anodic alumina will allow to increase the threshold of sensitivity and stability of micromechanical gyroscope characteristics owing to the high precision of geometric dimensions, the stability of the elastic properties and the quality factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.