Plasmids containing four GFP-tagged isoforms of the human GDNF gene, with both pre- and pro-regions (pre-pro- GDNF), with the pre- (pre-GDNF) or the pro-region (pro-GDNF) alone, and without the pre- and pro-regions (mGDNF), were used to transfect HEK293 cells (human embryonic kidney cell line). The effect of the transgenic products on the growth of processes was studied in the spinal ganglia of 14-day rat embryos. Media conditioned by the transgenic cells were used to culture explants and dissociated cells of embryonic dorsal root ganglia attached to the bottom of the plate. Medium conditioned by gfp-transgenic HEK293 cells was used as the control. Spinal ganglia explants and dissociated cells cultured in a medium supplemented with recombinant GDNF (recGDNF) as well as in conditioned media containing the pre-GDNF and mGDNF products demonstrated active growth of processes immunopositive for neuronal marker beta-3-tubulin as early as on culture day 4. The ganglia and cells cultured in control medium and media conditioned by cells transgenic for pro-GDNF had no or very few processes even after 10 days of culture.
The activation of genetic constructs including the Drosophila hsp70 promoter with four and eight HSE sequences in the regulatory region has been described in human cells. The promoter was shown to be induced at lower temperatures compared to the human hsp70 promoter. The promoter activity increased after a 60-min heat shock already at 38°C in human cells. The promoter activation was observed 24 h after heat shock for the constructs with eight HSEs, while those with four HSEs required 48 h. After transplantation of in vitro heat-shocked transfected cells, the promoter activity could be maintained for 3 days with a gradual decline. The promoter activation was confirmed in vivo without preliminary heat shock in mouse ischemic brain foci. Controlled expression of the Gdnf gene under a Drosophila hsp70 promoter was demonstrated. This promoter with four and eight HSE sequences in the regulatory region can be proposed as a regulated promoter in genetic therapeutic systems.
Aryl hydrocarbon receptor (AHR) is the key transcription factor that controls animal development and various adaptive processes. The AHR’s target genes are involved in biodegradation of endogenous and exogenous toxins, regulation of immune response, organogenesis, and neurogenesis. Ligand binding is important for the activation of the AHR signaling pathway. Invertebrate AHR homologs are activated by endogenous ligands whereas vertebrate AHR can be activated by both endogenous and exogenous ligands (xenobiotics). Several studies using mammalian cultured cells have demonstrated that transcription of the AHR target genes can be activated by exogenous AHR ligands, but little is known about the effects of AHR in a living organism. Here, we examined the effects of human AHR and its ligands using transgenic Drosophila lines with an inducible human AhR gene. We found that exogenous AHR ligands can increase as well as decrease the transcription levels of the AHR target genes, including genes that control proliferation, motility, polarization, and programmed cell death. This suggests that AHR activation may affect the expression of gene networks that could be critical for cancer progression and metastasis. Importantly, we found that AHR target genes are also controlled by the enzymes that modify chromatin structure, in particular components of the epigenetic Polycomb Repressive complexes 1 and 2. Since exogenous AHR ligands (alternatively – xenobiotics) and small molecule inhibitors of epigenetic modifiers are often used as pharmaceutical anticancer drugs, our findings may have significant implications in designing new combinations of therapeutic treatments for oncological diseases.
Two members of the d4 family of presumptive transcription modulators, neuro-d4 (Neud4) and ubi-d4/Requiem (Req), have been characterized previously. We cloned and characterized the third member of this gene family, cer-d4 (Cerd4), from chicken and mouse cDNA libraries. The expression patterns of Cerd4 gene in both species are similar and more restricted than expression patterns of other two d4 genes. The main sites of Cerd4 expression are retina and cerebellum, where multiple transcripts could be detected. Two major types of Cerd4 proteins are a full-length isoform possessing all domains characteristic to the d4 family and truncated XZ isoform without C-terminal tandem of PHD fingers. The developmental kinetics of expression of these isoforms is different. The intron/exon structure of human Cerd4 gene is similar to that of neuro-d4 and ubi-d4/Requiem genes, but most introns of Cerd4 gene are much larger than the corresponding introns of the other two genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.