Segmental duplications (SDs) play a key role in genome evolution by providing material for gene diversification and creation of variant or novel functions. They also mediate recombinations, resulting in microdeletions, which have occasionally been associated with human genetic diseases. Here, we present a detailed analysis of a large genomic region (about 240 kb), located on human chromosome 1q22, that contains a tandem SD, SD1q22. This duplication occurred about 37 million years ago in a lineage leading to anthropoid primates, after their separation from prosimians but before the Old and New World monkey split. We reconstructed the hypothetical unduplicated ancestral locus and compared it with the extant SD1q22 region. Our data demonstrate that, as a consequence of the duplication, new anthropoid-specific genetic material has evolved in the resulting paralogous segments. We describe the emergence of two new genes, whose new functions could contribute to the speciation of anthropoid primates. Moreover, we provide detailed information regarding structure and evolution of the SD1q22 region that is a prerequisite for future studies of its anthropoid-specific functions and possible linkage to human genetic disorders.
Pax genes encode transcription factors governing the determination of different cell types and even organs in the development of multicellular animals. Pax proteins are characterized by the presence of three evolutionarily conserved elements: two DNA-binding domains, the paired domain (PD) and paired-type homeodomain (PtHD), and the short octopeptide sequence (OP) located between PD and PtHD. PD is the defining feature of this class of genes, while OP and/or PtHD may be divergent or absent in some members of the family. Phylogenetic analyses of the PD and PtHD sequences do not distinguish which particular type of the extant Pax genes more resembles the ancestral type. Here we present evidence for the existence of a fourth evolutionarily conserved domain in the Pax proteins, the paired-type homeodomain tail (PHT). Our data also imply that the hypothetical proto-Pax protein most probably exhibited a complex structure, PD-OP-PtHD-PHT, which has been retained in the extant proteins Pax3/7 of the ascidia and lancelet, and Pax7 of the vertebrates. Finally, based on structural considerations, a scenario for the evolutionary emergence of the proto-Pax gene is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.