Purpose. There are some unresolved issues in vibration damping – the lack of engineering calculations for the vibration dampers by rolling friction; the absence of evidence of their application appropriateness. Considering this fact, the authors suggest to prove that the dampers based on rolling friction, are similar in rate of oscillation damping by hydraulic shock absorbers. At the same time, they are easier for the hydraulic design, and easily amenable to manual adjustment, both in automatic and manual mode. Methodology. Fixed techniques of practice in order to determine amplitudes of the oscillations of a shock absorber led to a predetermined result and will apply this theory in the calculation of other vibration dampers. Findings. Analysis of the formulas and graphs leads to the following conclusions and recommendations: 1) the nature of the oscillation damping at vibration dampers by rolling friction is close to their decay in the viscous resistance; 2) when conducting the necessary experiments the shock absorber rolling can be recommended as alternatives to hydraulic ones. The research results of this task will help implement the new trend in reduction of dynamic loads in vehicles. Originality. With the help of theoretical curves to determine the coefficients of rolling friction the dependences for determining the amplitudes of the oscillations in the vertical movement of cargo were obtained. At the same time, the previously proposed analytical dependence for determining the coefficient of rolling friction contains only conventional mechanical constants of the contacting bodies and there geometrical dimensions. Practical value. Due to the existing well-known disadvantages of hydraulic shock absorbers it would be logical to apply shock absorbers that are technologically convenient in manufacturing and easy to adjust the damping rate. The proposed theory can be used in the design of shock absorbers rolling as an alternative to the hydraulic shock absorbers of machines.
Purpose. The value of drive resistance to its movement is the main parameter at calculating the drive power of bridge crane. The value of the wheel rolling friction on the rails is one of the important parts of the resistance to movement. It is necessary to determine the dependence of static (dynamic) quantities of resistance to the bridge crane movement on a straight section of the track from the position of the bogie in the span, and explore the influence of the wheel flanges resistance for wear. Methodology. Using the analytical dependences for determining the rolling friction coefficient, that depends on the size of the half-width of the contact between the wheel and rail, the improved method for calculating the required drive power of the crane was proposed. Findings. With the proposed method of power calculation the characteristic curve of the crane wheel loads, the coefficient of rolling friction of the wheels and the crane resistance to movement from the position of the bogie on span were built. In the result of graphs analysis it was found that the engine power, obtained by the proposed method is higher than the recommended by the existing standards. The more precise formula for determining the total coefficient of sliding friction that takes into account the friction of wheel flanges on the rail is given. The characteristic curves of such coefficient of friction and the total resistance to movement of the position of the crane bogie were built. Originality. The scientists proposed an improved method of determining the required engine power of bridge crane, which takes into account the effect of rolling friction of the wheels on the rails and the bogie in the span. The improved formula for determining the coefficient of friction that takes into account the friction wheel flanges of the rail was given. The characteristic curve of this coefficient of friction and the total resistance movement of crane from the position of the crane bogie were built. Practical value. The application of the proposed method of determining the driving power of the crane allows determining its value more precisely, taking into account the impedance of the rolling friction of the wheels on the rails with a flanged on the rails. This approach enables better selection of elements of the mechanism of the bridge crane movement.
Purpose. About one of the causes of slip rolling is known from the second half of the 19th century, it was believed that the slip resistance appears at the place of contact due to different speeds on the arc of contact. Only in the mid-20th century it was proved that this resistance is negligible in rolling resistance. However (for some unknown reason) it is ignored the fact that in practice in rolling bearings may rotate both the inner ring with a stationary outer one, and vice versa almost in equal relations. It is not taken into account the fact that the ball or roller in the rolling bearings runs the different distance along the roller path of the outer and inner bearing cages in one revolution. This fact is not taken into account in determining the calculated values for the friction coefficient of a rolling bearing reduced to the shaft. Therefore, the aim of this work is to determine the influence of path length on the track riding the outer and inner race of the bearing on the determination of the calculated value of the coefficient of friction of rolling bearings is given to the shaft. Methodology. The solution technique is based on the theory of plane motion of a rigid body, the theory of Hertzian contact deformation and the analytical dependencies for determination of coefficient of rolling friction. Findings. The obtained dependences on determination of rolling resistance of the balls or rollers along the bearing tracks of inner and outer bearing cages as well as path difference metering of the rolling on them allows to analytically obtain the rolling resistance and slipping for any size of bearings and different devices of bearing units. It is also possible at the design stage of rolling nodes to handle not only the design but also the content of the node. Originality. Using the analytical dependences for determination of the rolling resistance of bodies at point and line contacts, and also account for the difference in the path of the rolling ball or roller on the outer and inner cages of the bearing one can more accurately find the rolling resistance in the bearings. Practical value. The obtained dependences allow designing the bearing units with minimal energy consumption.
Purpose. Designing new models of construction machines is closely related to the development of slewing gear, and that, in turn, has a drive whose power and dimensions depend on the rotational resistance and the reduced friction coefficient in the units. The absence of analytical dependencies for determining the reduced coefficient of friction for the rotation of construction machines, first, restricts the designer's ability to select materials, and secondly, does not allow the adoption of optimal design solutions. Therefore, the purpose of the article is to find analytical solutions to determine the rotational resistance in the slewing gear of construction machines, which allows projecting more advanced gears and machines in general. Existing techniques are based on empirical dependencies and experimental coefficients that reduce the accuracy of calculations, increase the size and cost of work. It is proposed to improve the accuracy and simplify the process of determining the rotational resistance and the magnitude of the reduced rotational resistance coefficient of the building tower cranes. Methodology. The set objectives can be achieved by means of analytical dependencies for determination of rolling friction coefficients over linear and point contacts. This will enable to find the more accurate value of the resistance coefficient, and the constructor during the calculations to take targeted measures to reduce it, using the mechanical constants of materials of the units and their geometric parameters. The calculation is based on Hertz contact deformation theory and the body point plane motion theory. Findings. The obtained dependencies will allow analytically to find the resistance of rolling resistance of rollers in construction machines with fixed and rotating pillars, with circular rotary devices, as well as in ball and roller slewing rings. The calculated values of the rotational resistance coefficients for some types of mechanisms give similar values with those recommended, while for others they significantly differ and require their refinement in reference values. Originality of the work consists in the use of analytical dependences for determining the reduced coefficient of the rotational resistance over linear and point contacts using Hertz contact deformation theory and Tabor partial analytic dependencies theory. Practical value. The obtained dependencies will allow to design new types of slewing gear units of the construction machines and to reveal the additional rotational resistances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.