The life cycle of a construction (or its element) is considered as markovian process with discrete states and continuous time. Five operational states have been accepted, in which the construction may be. The corresponding system of differential equations is obtained for the case of a homogeneous markovian process with a constant conversion rate (Kolmogorov system). The method of uncertain coefficients is applied to solve the system of equations in analytical form. The obtained solutions make it possible to determine the probability of finding the construction in a particular state as well as the most likely transition time from one operational state to another. Security function defined as the probability of not finding the construction in its last (inoperable) state and the failure rate function. The graphs of the probability of finding a construction in each of the five states, reliability and failure rate functions are presented and investigated. The obtained analytical dependences make it possible to determine the longevity and residual life of the work both individual elements and structures as a whole and optimize scheduling for ongoing maintenance work, significantly improve the performance of the structure, reduce the cost of repair work and extend the life of the structure.
The article is devoted to the development of practical methods to ensure the durability of asphalt pavement on a rigid basis of roads. The goal of the work. Practical methods of ensuring the durability of asphalt pavement on a rigid basis of roads are proposed. The object of research is asphalt-concrete pavement on a hard base of highways. Research method: analytical-experimental using the provisions of the theory of elasticity and thermo-viscoelasticity and experimental methods of research of track formation in asphalt concrete pavement on a rigid basis; mathematical statistics; statistical analysis of scientific publications, technical and normative literature. The article presents the features of the design of grain warehouses of asphalt mixtures, namely: The proposed features of the design of grain warehouses of asphalt concrete, taking into account the rate of resistance to track formation; Requirements for designing the grain composition of asphalt concrete of high resistance to track formation with optimization in terms of estimated service life are proposed. The conducted researches allowed to develop a method of estimating the homogeneity from the time of transportation of the asphalt concrete mixture in the car body to the object according to the resistance of asphalt concrete to the formation of the track. Requirements for checking the flow rate in the crushed-mastic asphalt-concrete mixture due to the terms of its storage and transportation have been developed, which avoids segregation of the coating. The criterion of strength of asphalt concrete pavement on a rigid basis of the highway is improved due to the consideration of different time of action of tensile load at bending that will allow to design more precisely a covering of the increased durability. The technique of the minimum admissible temperature of consolidation of asphalt concrete mix at the device of a covering on a rigid basis of highways that will allow to provide durability of a covering is offered for practical application. KEY WORDS: ASPHALT CONCRETE, TRACK RESISTANCE, GRAIN COMPOSITION DESIGN, TEMPERATURE, TRANSPORTATION, SEALING
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.