Water is the most abundant liquid on earth and also the substance with the largest number of anomalies in its properties. It is a prerequisite for life and as such a most important subject of current research in chemical physics and physical chemistry. In spite of its simplicity as a liquid, it has an enormously rich phase diagram where different types of ices, amorphous phases, and anomalies disclose a path that points to unique thermodynamics of its supercooled liquid state that still hides many unraveled secrets. In this review we describe the behavior of water in the regime from ambient conditions to the deeply supercooled region. The review describes simulations and experiments on this anomalous liquid. Several scenarios have been proposed to explain the anomalous properties that become strongly enhanced in the supercooled region. Among those, the second critical-point scenario has been investigated extensively, and at present most experimental evidence point to this scenario. Starting from very low temperatures, a coexistence line between a high-density amorphous phase and a low-density amorphous phase would continue in a coexistence line between a high-density and a low-density liquid phase terminating in a liquid–liquid critical point, LLCP. On approaching this LLCP from the one-phase region, a crossover in thermodynamics and dynamics can be found. This is discussed based on a picture of a temperature-dependent balance between a high-density liquid and a low-density liquid favored by, respectively, entropy and enthalpy, leading to a consistent picture of the thermodynamics of bulk water. Ice nucleation is also discussed, since this is what severely impedes experimental investigation of the vicinity of the proposed LLCP. Experimental investigation of stretched water, i.e., water at negative pressure, gives access to a different regime of the complex water diagram. Different ways to inhibit crystallization through confinement and aqueous solutions are discussed through results from experiments and simulations using the most sophisticated and advanced techniques. These findings represent tiles of a global picture that still needs to be completed. Some of the possible experimental lines of research that are essential to complete this picture are explored.
Twenty years ago Poole et al. suggested that the anomalous properties of supercooled water may be caused by a critical point that terminates a line of liquid–liquid separation of lower-density and higher-density water. Here we present a thermodynamic model based on this hypothesis, which describes all available experimental data for supercooled water with better quality and fewer adjustable parameters than any other model. Liquid water at low temperatures is viewed as an ‘athermal solution' of two molecular structures with different entropies and densities. Alternatively to popular models for water, in which liquid–liquid separation is driven by energy, the phase separation in the athermal two-state water is driven by entropy upon increasing the pressure, while the critical temperature is defined by the ‘reaction' equilibrium constant. The model predicts the location of density maxima at the locus of a near-constant fraction of the lower-density structure.
We review the available experimental information on the thermodynamic properties of supercooled water and demonstrate the possibility of modeling these thermodynamic properties on a theoretical basis. We show that by assuming the existence of a liquid-liquid critical point in supercooled water, the theory of critical phenomena can give an accurate account of the experimental thermodynamic-property data up to a pressure of 150 MPa. In addition, we show that a phenomenological extension of the theoretical model can account for all currently available experimental data in the supercooled region, up to 400 MPa. The stability limit of the liquid state and possible coupling between crystallization and liquid-liquid separation are also discussed. It is concluded that critical-point thermodynamics describes the available thermodynamic data for supercooled water within experimental accuracy, thus establishing a benchmark for further developments in this area.
Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. One possible explanation of the origin of these anomalies lies in the existence of a metastable liquid-liquid phase transition (LLPT) between two (high and low density) forms of water. While the anomalies are observed in experiments on bulk and confined water and by computer simulation studies of different water-like models, the existence of a LLPT in water is still debated. Unambiguous experimental proof of the existence of a LLPT in bulk supercooled water is hampered by fast ice nucleation which is a precursor of the hypothesized LLPT. Moreover, the hypothesized LLPT, being metastable, in principle cannot exist in the thermodynamic limit (infinite size, infinite time). Therefore, computer simulations of water models are crucial for exploring the possibility of the metastable LLPT and the nature of the anomalies. In this work, we present new simulation results in the NVT ensemble for one of the most accurate classical molecular models of water, TIP4P/2005. To describe the computed properties and explore the possibility of a LLPT, we have applied two-structure thermodynamics, viewing water as a non-ideal mixture of two interconvertible local structures ("states"). The results suggest the presence of a liquid-liquid critical point and are consistent with the existence of a LLPT in this model for the simulated length and time scales. We have compared the behavior of TIP4P/2005 with other popular water-like models, namely, mW and ST2, and with real water, all of which are well described by two-state thermodynamics. In view of the current debate involving different studies of TIP4P/2005, we discuss consequences of metastability and finite size in observing the liquid-liquid separation. We also address the relationship between the phenomenological order parameter of two-structure thermodynamics and the microscopic nature of the low-density structure.
A newly discovered Paleolithic site on the Yana River, Siberia, at 71 degrees N, lies well above the Arctic circle and dates to 27,000 radiocarbon years before present, during glacial times. This age is twice that of other known human occupations in any Arctic region. Artifacts at the site include a rare rhinoceros foreshaft, other mammoth foreshafts, and a wide variety of tools and flakes. This site shows that people adapted to this harsh, high-latitude, Late Pleistocene environment much earlier than previously thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.