This study investigated the synthesis and substrate properties of Cy5-labeled dUTP derivatives with different substituents, linkers between the dye unit and pyrimidine heterocycle and fluorophore charges. Fluorescently labeled nucleoside triphosphates were studied as substrates using multiplex PCR with Taq and Vent (exo-) DNA polymerases, the typical representatives of the A and B polymerase families. The efficiency of nucleotide incorporation during PCR was assessed with a multi-parameter hybridization analysis using a diagnostic DNA microarray. The hybridization analysis indirectly estimates the incorporation efficiency of dye-labeled nucleotides in multiplex PCR. Our results demonstrated higher efficiencies of substrates with electrically neutral dyes than electropositive and electronegative Cy5 residues.
To develop structural modifications of dNTPs that are compatible with Taq DNA polymerase activity, we synthesized eight dUTP derivatives conjugated with Cy3 or Cy5 dye analogues that differed in charge and charge distribution throughout the fluorophore. These dUTP derivatives and commercial Cy3− and Cy5-dUTP were studied in Taq polymerase-dependent polymerase chain reactions (PCRs) and in primer extension reactions using model templates containing one, two and three adjacent adenine nucleotides. The relative amounts of amplified DNA and the kinetic parameters Km and Vmax characterizing the incorporation of labelled dUMPs have been estimated using fluorescence measurements and analysed. The dUTPs labelled with electroneutral zwitterionic analogues of Cy3 or Cy5 fluorophores were used by Taq polymerase approximately one order of magnitude more effectively than the dUTPs labelled with negatively charged analogues of Cy3 or Cy5. The nucleotidyl transferase activity of Taq polymerase was also observed and resulted in the addition of dUMPs labelled with electroneutral or positively charged fluorophores to the 3′ ends of DNA. The introduction of mutually compensating charges into fluorophores or other functional groups conjugated to dNTPs can be considered a basis for the creation of PCR-compatible modified nucleoside triphosphates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.