The disruption of the protective intestinal barrier—the ‘leaky gut’—is a common complication of the inflammatory bowel disease. There is limited data on the mechanisms of the intestinal barrier disruption upon low-grade inflammation characteristic of patients with inflammatory bowel disease in clinical remission. Thus, animal models that recapitulate the complexity of chronic intestinal inflammation in vivo are of particular interest. In this study, we used Mucin-2 (Muc2) knockout mice predisposed to colitis to study intestinal barrier upon chronic inflammation. We used 4-kDa FITC-Dextran assay and transmission electron microscopy to demonstrate the increased intestinal permeability and morphological defects in intercellular junctions in Muc2 knockout mice. Confocal microscopy revealed the disruption of the apical F-actin cytoskeleton and delocalization of tight junction protein Claudin-3 from the membrane. We further demonstrate mitochondrial damage, impaired oxygen consumption and the reduction of the intestinal ATP content in Muc2 knockout mice. Finally, we show that chemically induced mitochondrial uncoupling in the wild type mice mimics the intestinal barrier disruption in vivo and causes partial loss of F-actin and membrane localization of Claudin-3. We propose that mitochondrial damage and metabolic shifts during chronic inflammation contribute to the leaky gut syndrome in Muc2 knockout animal model of colitis.
Inflammatory bowel diseases (IBD) comprise a distinct set of clinical symptoms resulting from chronic inflammation within the gastrointestinal (GI) tract. Despite the significant progress in understanding the etiology and development of treatment strategies, IBD remain incurable for thousands of patients. Metabolic deregulation is indicative of IBD, including substantial shifts in lipid metabolism. Recent data showed that changes in some phospholipids are very common in IBD patients. For instance, phosphatidylcholine (PC)/phosphatidylethanolamine (PE) and lysophosphatidylcholine (LPC)/PC ratios are associated with the severity of the inflammatory process. Composition of phospholipids also changes upon IBD towards an increase in arachidonic acid and a decrease in linoleic and a-linolenic acid levels. Moreover, an increase in certain phospholipid metabolites, such as lysophosphatidylcholine, sphingosine-1-phosphate and ceramide, can result in enhanced intestinal inflammation, malignancy, apoptosis or necroptosis. Because some phospholipids are associated with pathogenesis of IBD, they may provide a basis for new strategies to treat IBD. Current attempts are aimed at controlling phospholipid and fatty acid levels through the diet or via pharmacological manipulation of lipid metabolism.
Inflammatory bowel diseases (IBD) are chronic and relapsing inflammatory disorders of the gastrointestinal tract with complex etiology and no strategies for complete cure. IBD are often complicated by mental disorders like anxiety and depression, indicating substantial shifts in the microbiota gut-brain axis. However, the mechanisms connecting IBD to mental diseases are still under debate. Here we use Muc2 knockout mouse model of chronic colitis to uncouple the effects of the intestinal microbiota on host behavior from chronic inflammation in the gut. Muc2 knockout male mice exhibit high exploratory activity, reduced anxiety-related behaviors, impaired sensorimotor gating, and altered social preference towards males and females. Microbial transfer to wild-type mice via littermate co-housing shows that colitis-associated microbiota rather than inflammation per se defines behavioral features in Muc2 colitis model. Metagenomic profiling and combination of antibiotic treatments revealed that bacterial species Akkermansia muciniphila is associated with the behavioral phenotype in mutants, and that its intestinal abundance correlates with social preference towards males. Metabolomic analysis together with pharmacological inhibition of Gly and NMDA receptors helped us to determine that brain glycine is responsible for the behavioral phenotype in Muc2 mice. Blood and brain metabolic profiles suggest that microbiota-dependent changes in choline metabolism might be involved in regulation of central glycine neurotransmission. Taken together, our data demonstrates that colitis-associated microbiota controls anxiety, sensorimotor gating and social behavior via metabolic regulation of the brain glycinergic system, providing new venues to combat neurological complications of IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.