Lysine-rich proteins are some of the most important proteins of neurons and it has become necessary to investigate the possible role of L-lysine as a brain functioning regulator. The purpose of our study is to identify the characteristics and the mechanisms of L-lysine effects on the different types of pain-induced behavior in the stimulation of tail and foot-shock models in 210 adult male Wistar rats. L-lysine was administered in intraperitoneal or intracerebroventricular injections in doses of 0.15–50.0 µg/kg. When a tail is irritated, L-lysine was found to enhance pain sensitivity and affective defense after both intraperitoneal and intracerebroventricular administration. In the case of unavoidable painful irritation of a pair of rats with both types of L-lysine administration, there was no direct correlation of the severity of pain with defensive reactions and outbursts of aggression. This indicates a more complex integration of the activity of brain structures in this situation of animal interaction, which was confirmed by the results of the direct amino acid action on the periventricular brain structures. Our findings show that L-lysine influences the selective brain activity in dependence on the biological significance of pain-induced behavior.
Intraperitoneal administration of tripeptide Gly-His-Lys to male rats in doses of 0.5, 5, and 50 μg/kg 12 min before the start of the experiment produced an anxiolytic effect in the elevated plus maze test manifested in an increase in the time spent in open arms and shortened time spent in the closed arms. The anxiolytic effect was most pronounced after injection of 0.5 μg/kg peptide and decreased with increasing the dose of the peptide. Replacement of L-lysine with D-lysine in the tripeptide molecule was accompanied by a significant weakening of the neurotropic effects in all studied doses. Attachment of D-alanine to N- or C-terminus of Gly-His-Lys peptide leveled its anxiolytic action in all doses; significant changes in some measures of increased anxiety after administration at 50 μg/kg were found.
We studied the effect of Gly-His -Lys tripeptide administered intraperitoneally in doses of 5, 15, 50 and 150 μg/kg on pain-induced aggressive-defensive behavior. A foot-shock model of aggression in rats grouped in pairs in an electrified chamber was used. Analgesic and antiaggresiogenic effects of the peptide were demonstrated. It was found the L-lysine residue plays the key role in these effects, because they were observed under the influence of L-lysine administration in doses close to its equimolar content in the studied tripeptide.
Intraperitoneal injection of L-arginine to male Wistar rats 12 min before the start of the experiment produced a nociceptive effect on models of electrocutaneous stimulation of the tail or hot-plate test and increased nociceptive behavior due to high sensitivity of supraspinal nociceptive structures to this compound. The nociceptive effect of this amino acid was more pronounced and persistent under conditions of electrocutaneous stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.