Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare and life-threatening complication of pulmonary embolism. As existing animal models of CTEPH do not fully recapitulate complex disease pathophysiology, we report a new rat model for CTEPH evoked by repetitive embolization of the distal pulmonary artery branches with partially biodegradable alginate microspheres (MSs). MSs (180 ± 28 μm) were intravenously administered eight times at 4-day intervals; control animals received saline. The validity of the model was confirmed using transthoracic echocardiography, exercise testing, catheterization of the right ventricle, and histological examination of the lung and heart. The animals in the CTEPH group demonstrated a stable increase in right ventricular systolic pressure (RVSP) and decreased exercise tolerance. Histopathological examination revealed advanced medial hypertrophy in the small pulmonary arteries associated with fibrosis. The diameter of the main pulmonary artery was significantly larger in the CTEPH group than in the control group. Marinobufagenin and endothelin-1 serum levels were significantly elevated in rats with CTEPH. In conclusion, repetitive administration of alginate MSs in rats resulted in CTEPH development characterized by specific lung vasculature remodeling, reduced exercise tolerance, and a persistent rise in RVSP. The developed model can be used for pre-clinical testing of promising drug candidates.
AIMTo evaluate the effects of glucagon-like peptide-1 analogs (GLP-1a) combined with insulin on myocardial ischemia-reperfusion injury in diabetic rats.METHODSType 2 diabetes mellitus (T2DM) was induced in male Wistar rats with streptozotocin (65 mg/kg) and verified using an oral glucose tolerance test. After anesthesia, the left coronary artery was occluded for 40 min followed by 80 min reperfusion. Blood glucose level was measured during surgery. Rats were randomized into six groups as follows: (1) control rats; (2) insulin (0.1 U/kg) treated rats prior to ischemia; (3) insulin (0.1 U/kg) treated rats at reperfusion; (4) GLP-1a (140 mg/kg) treated rats prior to ischemia; (5) GLP-1a (140 mg/kg) treated rats at reperfusion; and (6) rats treated with GLP-1a (140 mg/kg) prior to ischemia plus insulin (0.1 U/kg) at reperfusion. Myocardial area at risk and infarct size was measured planimetrically using Evans blue and triphenyltetrazolium chloride staining, respectively.RESULTSThere was no significant difference in the myocardial area at risk among groups. Insulin treatment before ischemia resulted in a significant increase in infarct size (34.7% ± 3.4% vs 18.6% ± 3.1% in the control rats, P < 0.05). Post-ischemic administration of insulin or GLP-1a had no effect on infarct size. However, pre-ischemic administration of GLP-1a reduced infarct size to 12% ± 2.2% (P < 0.05). The maximal infarct size reduction was observed in the group treated with GLP-1a prior to ischemia and insulin at reperfusion (8% ± 1.6%, P < 0.05 vs the control and GLP-1a alone treated groups).CONCLUSIONGLP-1a pre-administration results in myocardial infarct size reduction in rats with T2DM. These effects are maximal in rats treated with GLP-1a pre-ischemia plus insulin at reperfusion.
Introduction. Chronic thromboembolic pulmonary hypertension (CTEPH) is one of the most severe complications of pulmonary embolism (PE), characterized by poor prognosis and insuffcient effectiveness of standard treatment approaches. A small number of representative models of CTEPH make it diffcult to conduct preclinical studies of promising pharmacological substances.Objective – development and validation of the experimental model of CTEPH in rats by embolization of the distal branches of the pulmonary artery with biodegradable microspheres.Material and methods. Male Wistar rats were used for the experiments. Biodegradable microspheres (MS) based on sodium alginate and autologous blood clots (AT) were used as embolizing particles. The animals were divided into groups: control: saline solution was injected 4 times with an interval of 8 days into the tail vein; AT: according to the above protocol, 50 μL of AT was injected; MS was administered intravenously in a volume of 50 μl of MS according to two protocols: MS4: 4 times with an interval of 8 days; MS8: 8 times with an interval of 4 days. After 2 and 6 weeks after the last injection, a histological examination of the lungs was performed; after 6 weeks: echocardiographic study (TTE), right ventricular catheterization (RV) with measurement of right ventricular systolic pressure (RVSP), treadmill test, assessment of serum endothelin1 levels by the immunoassay method.Results. During the experiments, the survival rate in the MS8 group was 50 %. In the other groups, there were no animal losses. According to the treadmill test 6 weeks after the modeling of PE, exercise tolerance was signifcantly reduced in the MC4 and MC8 groups compared with the control group. TTE data indicate a signifcant increase in the diameter of the pulmonary trunk and the right ventricular outflow tract in the MC8 compared with the control and AT. There were signifcant increase in RVSP and the level of endothelin1 compared with the control only in the MS8. After 6 weeks, the index of hypertrophy of vessel wall of the pulmonary artery in the MC4 and MC8 was signifcantly higher compared with the control and AT groups.Conclusion. Based on the use of MS, administered under the MS 8 protocol, a new representative model of CTEPH has been created, which can be used to test promising pharmacological substances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.