The study of genetic diversity between Lathyrus sativus L. and its relative species may yield fundamental insights into evolutionary history and provide options to meet the challenge of climate changes. 30 SSR loci were employed to assess the genetic diversity and population structure of 283 individuals from wild and domesticated populations from Africa, Europe, Asia and ICARDA. The allele number per loci ranged from 3 to 14. The average gene diversity index and average polymorphism information content (PIC) was 0.5340 and 0.4817, respectively. A model based population structure analysis divided the germplasm resources into three subgroups: the relative species, the grasspea from Asia, and the grasspea from Europe and Africa. The UPGMA dendrogram and PCA cluster also demonstrated that Asian group was convincingly separated from the other group. The AMOVA result showed that the cultivated species was quite distinct from its relative species, however a low level of differentiation was revealed among their geographic origins. In all, these results provided a molecular basis for understanding genetic diversity of L. sativus and its relatives.
BackgroundGrasspea (Lathyrus sativus L., 2n = 14), a member of the family Leguminosae, holds great agronomic potential as grain and forage legume crop in the arid areas for its superb resilience to abiotic stresses such as drought, flood and salinity. The crop could not make much progress through conventional breeding in the past, and there are hardly any detailed molecular biology studies due to paucity of reliable molecular markers representative of the entire genome.ResultsUsing the 454 FLX Titanium pyrosequencing technique, 651,827 simple sequence repeat (SSR) loci were identified and 50,144 nonredundant primer pairs were successfully designed, of which 288 were randomly selected for validation among 23 L. sativus and one L. cicera accessions of diverse provenance. 74 were polymorphic, 70 monomorphic, and 144 with no PCR product. The number of observed alleles ranged from two to five, the observed heterozygosity from 0 to 0.9545, and Shannon’s information index ranged from 0.1013 to 1.0980, respectively. The dendrogram constructed by using unweighted pair group method with arithmetic mean (UPGMA) based on Nei's genetic distance, showed obvious distinctions and understandable relationships among the 24 accessions.ConclusionsThe large number of SSR primer pairs developed in this study would make a significant contribution to genomics enabled improvement of grasspea.
Background Mungbean (Vigna radiata (L.) R. Wilczek, or green gram) is important tropical and sub-tropical legume and a rich source of dietary protein and micronutrients. In this study we employ GWAS to examine the genetic basis of variation in several important traits in mungbean, using the mini-core collection established by the World Vegetable Center, which includes 296 accessions that represent the major market classes. This collection has been grown in a common field plot in southern European part of Russia in 2018. Results We used 5041 SNPs in 293 accessions that passed strict filtering for genetic diversity, linkage disequilibrium, population structure and GWAS analysis. Polymorphisms were distributed among all chromosomes, but with variable density. Linkage disequilibrium decayed in approximately 105 kb. Four distinct subgroups were identified within 293 accessions with 70% of accessions attributed to one of the four populations. By performing GWAS on the mini-core collection we have found several loci significantly associated with two important agronomical traits. Four SNPs associated with possibility of maturation in Kuban territory of Southern Russia in 2018 were identified within a region of strong linkage which contains genes encoding zinc finger A20 and an AN1 domain stress-associated protein. Conclusions The core collection of mungbean established by the World Vegetable Center is a valuable resource for mungbean breeding. The collection has been grown in southern European part of Russia in 2018 under incidental stresses caused by abnormally hot weather and different photoperiod. We have found several loci significantly associated with color of hypocotyl and possibility of maturation under these stressful conditions. SNPs associated with possibility of maturation localize to a region on chromosome 2 with strong linkage, in which genes encoding zinc finger A20 and AN1 domain stress associated protein (SAP) are located. Phenotyping of WorldVeg collection for maturation traits in temperate climatic locations is important as phenology remains a critical breeding target for mungbean. As demand rises for mungbean, production in temperate regions with shorter growing seasons becomes crucial to keep up with needs. Uncovering SNPs for phenology traits will speed breeding efforts.
Grasspea (Lathyrus sativus L., 2n = 14) has great agronomic potential because of its ability to survive under extreme conditions, such as drought and flood. However, this legume is less investigated because of its sparse genomic resources and very slow breeding process. In this study, 570 million quality-filtered and trimmed cDNA sequence reads with total length of over 82 billion bp were obtained using the Illumina NextSeqTM 500 platform. Approximately two million contigs and 142,053 transcripts were assembled from our RNA-Seq data, which resulted in 27,431 unigenes with an average length of 1,250 bp and maximum length of 48,515 bp. The unigenes were of high-quality. For example, the stay-green (SGR) gene of grasspea was aligned with the SGR gene of pea with high similarity. Among these unigenes, 3,204 EST-SSR primers were designed, 284 of which were randomly chosen for validation. Of these validated unigenes, 87 (30.6%) EST-SSR primers produced polymorphic amplicons among 43 grasspea accessions selected from different geographical locations. Meanwhile, 146,406 SNPs were screened and 50 SNP loci were randomly chosen for the kompetitive allele-specific PCR (KASP) validation. Over 80% (42) SNP loci were successfully transformed to KASP markers. Comparison of the dendrograms according to the SSR and KASP markers showed that the different marker systems are partially consistent with the dendrogram constructed in our study.
Asparagus bean immature pods and seeds are popular as food products for healthy and functional nutrition. Gas chromatography with mass spectrometry was used to compare metabolomic profiles of seeds and pods yielded by old Chinese landraces and the modern cultivars ‘Yunanskaya’ and ‘Sibirskiy razmer’. About 120 compounds were identified. The content of a majority among groups of compounds was higher in pods than in seeds. The amount of free amino acids in pods was 47 times higher, polyols and phytosterols 5 times higher, phenolics 4 times higher, and organic acids and saponins 3 times higher than in seeds. Differences were found in the relative content of compounds. Among phenolic compounds, the dominant one for seeds was protocatechuic acid, and for pods 4-hydroxycinnamic acid. Only polyols were identified in seeds, but pods additionally contained ethanolamine, phytol, and phytosphingosine. The ratio for nonsaturated/saturated fatty acids was 2.2 in seeds and 1.4 in pods. Seeds contained more stigmasterol, and pods more β-sitosterol. Aglycones of saponins were identified: cycloartenol in seeds, α- and β-amyrins in pods. Oligosaccharides dominated in both seeds and pods. Landraces manifested higher protein content in pods, while modern cultivars had pods with higher contents of organic acids, polyols, monosaccharides, and fatty acids. The results obtained confirm the high nutritional value of asparagus bean seeds and pods, and the prospects of their use in various diets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.