Gaia16aye was a binary microlensing event discovered in the direction towards the northern Galactic disc and was one of the first microlensing events detected and alerted to by the Gaia space mission. Its light curve exhibited five distinct brightening episodes, reaching up to I=12 mag, and it was covered in great detail with almost 25,000 data points gathered by a network of telescopes. We present the photometric and spectroscopic follow-up covering 500 days of the event evolution. We employed a full Keplerian binary orbit microlensing model combined with the motion of Earth and Gaia around the Sun to reproduce the complex light curve. The photometric data allowed us to solve the microlensing event entirely and to derive the complete and unique set of orbital parameters of the binary lensing system. We also report on the detection of the first-ever microlensing space-parallax between the Earth and Gaia located at L2. The properties of the binary system were derived from microlensing parameters, and we found that the system is composed of two main-sequence stars with masses 0.57±0.05 M and 0.36±0.03 M at 780 pc, with an orbital period of 2.88 years and an eccentricity of 0.30. We also predict the astrometric microlensing signal for this binary lens as it will be seen by Gaia as well as the radial velocity curve for the binary system. Events such as Gaia16aye indicate the potential for the microlensing method of probing the mass function of dark objects, including black holes, in directions other than that of the Galactic bulge. This case also emphasises the importance of long-term time-domain coordinated observations that can be made with a network of heterogeneous telescopes.
We analyze the results of a rare long-lived quasisymmetric ellipsoidal-annular meteor trail recorded on November 18, 2017 by two optical all-sky cameras, spaced at a distance of 150 km. The analysis is based on astrometric processing results with the use of baseline measurement methods. We determine spatial-kinematic characteristics of the meteor trail, and find features of its evolution. The ignition and extinction heights of the meteor were in the range 75–120 km. The estimate of the meteor brightness gives the absolute magnitude value of about –7.3m. It is shown that the distribution of all parts of the long-lived meteor trail occurs in the same plane at a height of ~90 km at a speed of ~320 m/s and, apparently, cannot be a consequence of an air mass movement. The total time of the meteor trail observation was more than 30 min. We offer possible explanations for the results obtained in the context of upper atmosphere processes.
Using vertical sounding data obtained by the Irkutsk digisonde DPS-4 from 2003 to 2016, we have studied the frequency of occurrence of the F1 layer in winter conditions. The frequency of occurrence of the F1 layer in December–January is shown to be more than twice lower than that in February at any level of magnetic activity. At moderate and low solar activity under quiet geomagnetic conditions, the appearance of F1 layer in midlatitudes of the Northern Hemisphere may be caused by active thermodynamic processes, which lead to transformation or destruction of the circumpolar vortex at heights of the middle atmosphere. Such global dynamic changes occurring in the winter strato-mesosphere are often associated with sudden stratospheric warming events, which are accompanied by increased generation of atmospheric waves of various scales. These wave disturbances can propagate upward to the heights of the lower thermosphere and ionosphere, carrying a significant vertical flow of energy and causing variations in the composition, thermodynamic parameters of the neutral atmosphere and ionosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.