Relevance. The choice of adequate models of materials and deformation diagrams is of great importance when performing structural calculations in a nonlinear setting. Since there are no instructions on how to use the deformation diagrams of concrete and reinforcement when working together, given in SP 63.13330.2018, it is necessary to introduce assumptions for modeling reinforced concrete structures with finite elements of the same type. The aims of the work are to conduct numerical experiments on testing concrete cylinders for uniaxial compression and to verify the results with normative data. Methods. Numerical experiments were performed in the LS-DYNA software package. This program complex allows to simulate the joint work of concrete and reinforcement with the help of volume (for concrete) and rod (for reinforcement) finite elements. A cylinder with a diameter of 150 mm and a height of 300 mm was taken as model. Samples were modeled by volumetric finite elements. The CSCM - Continuous Surface Cap Model is a nonlinear material used to model concrete. Tests were carried out with samples of the following classes of concrete for cylindrical compressive strength: C12, C16, C20, C25, C30, C35, C40, C45, C50, C55. This corresponds to the following classes of cubic compressive strength: B15, B20, B25, B30, B37, B45, B50, B55, B60, B67. Results. The conducted researches have shown that the character of destruction of samples at numerical experiment corresponds to the character of destruction at tests. The investigated concrete model CSCM can be used in the calculation of concrete and reinforced concrete structures for the main classes of concrete, when taking into account the transition from cubic to prismatic strength and additional correction factors to cylindrical strength.
Введение и цели. При расчете зданий и сооружений на особые сочетания нагрузок, вызванные действием воздушных ударных волн, необходимо определить основные параметры действующей нагрузки. Нормативный подход, реализованный в современных нормативных документах, предлагает использование упрощенных методов расчета, основанных на использовании эквивалентных статических нагрузок. Целью исследования является получение основных параметров воздушных ударных волн, используя численное моделирование, а также рассмотрение характера распространения фронта ударной волны при расположении эпицентра взрыва на уровне земли и в воздухе. Материалы и методы. Для получения основных параметров воздушных ударных волн рассматриваются численные методы высокой точности, реализованные в современном программном комплексе LS-DYNA. Для описания процесса взрыва используется лагранжево-эйлеровый подход. Результаты. Получены изополя и графики превышения избыточного давления ΔР ф над атмосферным в распространяющейся воздушной ударной волне при эпицентре взрыва, расположенном на уровне земли и в воздухе, а также на дальнем расстоянии от проектируемого сооружения. Выводы. Рассматриваемый метод численного моделирования позволяет получить основные параметры воздушных ударных волн, которые могут быть использованы для дальнейшего расчета строительных конструкций. Ключевые слова: железобетонные конструкции, взрывные воздействия, воздушная ударная волна, нелинейная динамика, явная динамика, метод конечных элементов, численные методы Введение При проектировании определенных зданий и сооружений, таких как космодромы, химзаводы, хранилища и системы транспортировки газа и пр., в соответствии с отечественными нормами 1 необходимо выполнять расчет на особые воздействия техногенного или природного характера. Одним их таких воздействий являются воздушные ударные волны (ВУВ). ANALYSIS AND DESIGN OF BUILDING STRUCTURES Results. Isopoles and graphs of excess overpressure ΔР ф over atmospheric pressure in an air shock wave were obtained when the epicenter of the explosion was located at ground level and in the air, as well as at a distance from the designed structure. Conclusions. The considered method of numerical simulation allows to obtain the main parameters of air shock waves, which can be used for further calculation of building structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.