Autoantibody-mediated tissue destruction is among the main features of organ-specific autoimmunity. This report describes ''an antibody enzyme'' (abzyme) contribution to the site-specific degradation of a neural antigen. We detected proteolytic activity toward myelin basic protein (MBP) in the fraction of antibodies purified from the sera of humans with multiple sclerosis (MS) and mice with induced experimental allergic encephalomyelitis. Chromatography and zymography data demonstrated that the proteolytic activity of this preparation was exclusively associated with the antibodies. No activity was found in the IgG fraction of healthy donors. The human and murine abzymes efficiently cleaved MBP but not other protein substrates tested. The sites of MBP cleavage determined by mass spectrometry were localized within immunodominant regions of MBP. The abzymes could also cleave recombinant substrates containing encephalytogenic MBP 85-101 peptide. An established MS therapeutic Copaxone appeared to be a specific abzyme inhibitor. Thus, the discovered epitope-specific antibodymediated degradation of MBP suggests a mechanistic explanation of the slow development of neurodegeneration associated with MS.
The creation of effective bioscavengers as a pretreatment for exposure to nerve agents is a challenging medical objective. We report a recombinant method using chemical polysialylation to generate bioscavengers stable in the bloodstream. Development of a CHO-based expression system using genes encoding human butyrylcholinesterase and a proline-rich peptide under elongation factor promoter control resulted in self-assembling, active enzyme multimers. Polysialylation gives bioscavengers with enhanced pharmacokinetics which protect mice against 4.2 LD 50 of S-(2-(diethylamino)ethyl) O-isobutyl methanephosphonothioate without perturbation of long-term behavior.organophosphate | N-acetylneuraminic acid | Russian VX | pesticide | mass spectrometry
Multiple sclerosis (MS) is a widespread neurodegenerative autoimmune disease with unknown etiology. It is increasingly evident that, together with pathogenic T cells, autoreactive B cells are among the major players in MS development. The analysis of myelin neuroantigen-specific antibody repertoires and their possible cross-reactivity against environmental antigens, including viral proteins, could shed light on the mechanism of MS induction and progression. A phage display library of single-chain variable fragments (scFvs) was constructed from blood lymphocytes of patients with MS as a potential source of representative MS autoantibodies. Structural alignment of 13 clones selected toward myelin basic protein (MBP), one of the major myelin antigens, showed high homology within variable regions with cerebrospinal fluid MS-associated antibodies as well as with antibodies toward Epstein-Barr latent membrane protein 1 (LMP1). Three scFv clones showed pronounced specificity to MBP fragments 65-92 and 130-156, similar to the serum MS antibodies. One of these clones, designated E2, in both scFv and full-size human antibody constructs, was shown to react with both MBP and LMP1 proteins in vitro, suggesting natural cross-reactivity. Thus, antibodies induced against LMP1 during Epstein-Barr virus infection might act as inflammatory trigger by reacting with MBP, suggesting molecular mimicry in the mechanism of MS pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.