Electroluminescence has been studied in silicon light-emitting diodes containing oxygen precipitates at temperatures of 40-300 K. Oxygen ion implantation and multistage anneals are used for fabrication of the diodes. Over all temperature range, spectra are well approximated by one Lorentz and four Gaussian curves. Lines of dislocation-related luminescence D1-D4 (the D1 line is described by Lorentz curve) and oxygen precipitates (OPs) are present in the spectra. At temperature variation, peak positions of the D1, OP and D2 lines coincide with temperature dependence of the forbidden gap width reduced by values of 356, 330 and 303 meV respectively. Build and quenching areas are observed on temperature dependences of the electroluminescence intensities of the D1, OP and D2 lines, the activation energies of the processes are determined, and reasons of their appearance are discussed.
Silicon light-emitting diodes with dislocation-related electroluminescence have been studied at room temperature. For the fabrication of the light-emitting diode structures, a well-known method for the formation of dislocation-related luminescence centers during anneals of silicon with a high oxygen concentration in a flow of argon was modified by introducing a preliminary O+- ion implantation and carrying out a final anneal in a chlorine-containing atmosphere. In the electroluminescence spectra, the D1 dislocation-related luminescence line dominates at currents less than 150 mA and the near-band-edge luminescence line starts to dominate with increasing current. The electroluminescence excitation efficiency for the D1 center is 3.3 · 10-20 cm2 · s at room temperature.
Silicon light-emitting diodes with luminescence associated with (113) defects have been fabricated using implantation of 350 keV oxygen ions at the dose of 3.7∙1014 cm-2 and subsequent annealing at 700ᵒC for 1 h in a chlorine-containing atmosphere. Electroluminescence was studied in wide ranges of temperature and an excitation power. The line associated with (113) defects dominates in all the spectra. The temperature dependence of the line intensity depends on the excitation power in the range of low temperatures: an increase of the intensity with activation energy of 25 meV is observed at low current density and, with the increasing current density, a rise of the intensity is not observed. At higher temperatures, a decrease of the intensity with activation energy of 59 meV occurs regardless of a current density. With the increasing temperature, the peak of the line shifts by the same energy as the forbidden gap width, while the half width of the line grows linearly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.