We present the results of modeling a feed water control system. The system contains two regulatory devices the feed valve to control the flow rate, with electrohydraulic control, and the throttle valve to maintain constant pressure differential on the feed valve, with hydromechanical control. The valves have perforated flow parts to reduce hydrodynamic noise and vibration, which necessitates checking the dynamical characteristics of the system. The model was developed on the basis of equations describing the electrohydraulic converter dynamics, a differential pressure meter, a servo drive and flow parts with the use of Matlab Simulink. The modeling of dynamical processes caused by various disturbance inputs and control actions showed the compliance of the system with the requirements imposed on it.
Creation of a low-noise water flow control systems apparatus is the main objective of the research. The technique of carrying out the tests is based on the principles of acoustics, flow mechanics and the control theory. The main schemes of regulating the water flow rate are presented in the paper. It is shown that the scheme with the use of a flowmeter is the most promising in terms of improvement of vibronoise characteristics. A modular principle of constructing feed water rate control systems is presented. The design features of application of multistage rotary units of the apparatus meeting the hydrodynamic noise requirements for low rates without application of dissipative elements (e.g. mufflers) are formulated for the first time. Energy comparison of various control system schemes is carried out. It is shown that further improvement of operating devices in terms of vibronoise characteristics is possible with the use of the principle of serial-parallel water flow regulation. The results help to improve the mass-dimensional characteristics of systems and to increase their energy efficiency, to provide a low level of noise and to reduce the cost of production. The modularity of the apparatus ensures a high level of standardization and interchangeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.