The purpose of this study is to assess the production of nitric oxide in professional cross-country skiers with normotensive and hypertensive responses to physical activity at maximum load. The observation group included professional cross-country skiers (22.2 ± 7.1 years, = 107) who were current members of the national team of the Komi Republic. All the examined athletes performed the exercise test on a cycle ergometer “until exhaustion.” The following parameters were determined for each participant while they were sitting at rest, while at their anaerobic threshold level, during peak load, and during the recovery period (5th min): systolic blood pressure, diastolic blood pressure, heart rate, and the level of stable nitric oxide metabolites (nitrites, nitrates) in capillary blood samples. According to the blood pressure results, the cross-country skiers were divided into two groups. Group I included athletes with a normotensive response to stress. Group II was composed of individuals with a hypertensive response to stress. During the performance of the test “until exhaustion,” a significant (p < 0.05) increase in the amount of stable metabolites of nitric oxide was observed in the group of athletes with a normotensive response to the load compared with the group with a hypertensive response to the load. In athletes with a normotensive reaction to the load during exercise at maximum load and in the early recovery period, nitrate was prioritized in the regulation of vascular tone. The exercise test on a cycle ergometer “until exhaustion,” combined with the assessment of the levels of stable nitric oxide metabolites in plasma, can be considered a test for the early diagnosis of endothelial dysfunction in professional athletes.
The dynamics of systolic and diastolic BP in the annual cycle of women depends on meteorological factors and suggests that there is a change in the priorities of its control in different periods of a year.
The purpose of our study was to identify the features of metabolic regulation in highly trained cross-country skiers of different qualifications at different stages of the maximum load test. We examined 124 highly trained cross-country skiers (male, ages 17–24). The group consisted of two subgroups based on their competition performance: 61 nonelite athletes (Group I) and 63 elite athletes (group II), who were current members of the national team of the Komi Republic and Russia. The bicycle ergometer test was performed by using the OxyconPro system (Erich Jaeger, Hoechberg, Germany). All the examined athletes performed the exercise test on a cycle ergometer “until exhaustion”. The results of our research indicate that the studied groups of athletes with high, but different levels of sports qualifications are a convenient model for studying the molecular mechanisms of adaptation to physical loads of maximum intensity. Athletes of higher qualifications reveal additional adaptive mechanisms of metabolic regulation, which is manifested in the independence of serum lactate indicators under conditions of submaximal and maximum power from maximal oxygen uptake, and they have an NO-dependent mechanism for regulating lactate levels during aerobic exercise, including work at the anaerobic threshold.
Background Among n-3 polyunsaturated fatty acids (PUFAs), the most important is α-linolenic acid (ALA). The biological activity of ALA is not equivalent to that of the long-chain n-3 PUFAs, and it has pleiotropic effects, such as functioning as an energy substrate during long-term training when carbohydrate reserves are depleted. The purpose of this investigation was to study the link between the essential dietary and plasma ALA and aerobic performance, which is estimated via maximal fat oxidation (MFO), among skiers. Methods Twenty-four highly trained male athletes from the Russian cross-country skiing team participated in the study. ALA intake was determined by an original program used to assess the actual amount and frequency of fat consumption. The plasma level of ALA was determined using gas-liquid chromatography. The skiers’ aerobic performance was estimated via MFO and determined by indirect calorimetry using the system “Oxycon Pro”. Results The consumption of ALA in the diet in half of the skiers was below the recommended level at 0.5 ± 0.2 g/day. The deficiency of plasma ALA levels was on average 0.2 ± 0.1 Mol% for almost all participants. The consumption of ALA in the diet and its level in plasma were associated with MFO (rs = 0.507, p = 0.011; rs = 0.460, p = 0.023). Levels of ALA in plasma (p = 0.0523) and the consumption of ALA in the diet (p = 0.0039) were associated with high aerobic performance. Conclusions ALA in the diet of the athletes may be used as nutritional support to increase MFO and aerobic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.