The process of open-porous structure development in highdensity polyethylene (HDPE) films during uniaxial deformation in supercritical carbon dioxide (SC-CO 2 ) fluid at 35 °C and 10 MPa has been studied and visualized by means of atomic force microscopy. We suggest that the supercritical fluid act as adsorption-active medium, and the porous structure is developed via the crazing mechanism due to the increasing the distance between of lamellae and the formation of oriented separate fibrils in the intercrystallite space. Effective bulk porosity of the films has been up to 40%. Small-angle X-ray scattering studies and ethanol permeability measurements have revealed that the pores and fibrils are about 10 nm in diameter. The prepared nanoporous materials exhibit good vapor permeability. Structural and mechanical behavior of the prepared porous films has been investigated. Large reversible deformation (up to 80%) of HDPE in the SC-CO 2 has been observed. Repeated drawing of the shrunk films in air under ambient conditions has led to the open-porous structure recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.