A comparative study of melanin and ommochrome-containing samples, isolated from the black soldier fly (BSF) by enzymatic hydrolysis, alkaline and acid alcohol extraction or by acid hydrolysis, was carried out. Melanin was isolated both as a melanin-chitin complex and as a water-soluble melanin. Acid hydrolysis followed by delipidization yielded a more concentrated melanin sample, the electron spin resonance (ESR) signal of which was 2.6 × 1018 spin/g. The ommochromes were extracted from the BSF eyes with acid methanol. The antiradical activity of BSF melanins and ommochromes was determined by the method of quenching of luminol chemiluminescence. It has been shown that delipidization of water-soluble melanin increases its antioxidant properties. A comparison of the antioxidant activity of BSF melanins and ommochromes in relation to photoinduced lipid peroxidation was carried out. The ESR characteristics of native and oxidized melanins and ommochromes were studied. It is assumed that H. illucens adult flies can be a useful source of natural pigments with antioxidant properties.
The effect of superoxide radicals on melanin destruction and degradation of melanosomes isolated from cells of retinal pigment epithelium (RPE) of the human eye was studied. We found that potassium superoxide causes destruction of melanin in melanosomes of human and bovine RPE, as well as destruction of melanin from the ink bag of squid, with the formation of fluorescent decay products having an emission maximum at 520-525 nm. The initial kinetics of the accumulation of the fluorescent decay products is linear. Superoxide radicals lead simultaneously to a decrease in the number of melanosomes and to a decrease in concentration of paramagnetic centers in them. Complete degradation of melanosomes leads to the formation of a transparent solution containing dissolved proteins and melanin degradation products that do not exhibit paramagnetic properties. To completely degrade one melanosome of human RPE, 650 ± 100 fmol of superoxide are sufficient. The concentration of paramagnetic centers in a melanolipofuscin granule of human RPE is on average 32.5 ± 10.4% (p < 0.05, 150 eyes) lower than in a melanosome, which indicates melanin undergoing a destruction process in these granules. RPE cells also contain intermediate granules that have an EPR signal with a lower intensity than that of melanolipofuscin granules, but higher than that of lipofuscin granules. This signal is due to the presence of residual melanin in these granules. Irradiation of a mixture of melanosomes with lipofuscin granules with blue light (450 nm), in contrast to irradiation of only melanosomes, results in the appearance of fluorescent melanin degradation products. We suggest that one of the main mechanisms of age-related decrease in melanin concentration in human RPE cells is its destruction in melanolipofuscin granules under the action of superoxide radicals formed during photoinduced oxygen reduction by lipofuscin fluorophores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.