Гиперболическая решетка называется $(1{,}2)$-рефлективной, если ее группа автоморфизмов с точностью до конечного индекса порождена $1$- и $2$-отражениями. В данной работе доказывается, что фундаментальный многогранник $\mathbb{Q}$-арифметической кокомпактной группы отражений в трехмерном пространстве Лобачевского обладает таким ребром, что расстояние между обрамляющими гранями этого ребра достаточно мало. С по мощью этого результата получена классификация $(1{,}2)$-рефлективных анизотропных гиперболических решеток ранга $4$.
Библиография: 35 наименований.
Получены новые верхние оценки объемов прямоугольных многогранников в пространстве Лобачевского $\mathbb{H}^3$ в следующих трех случаях: для идеальных многогранников, все вершины которых лежат на абсолюте, для компактных многогранников, все вершины которых конечны, и для многогранников конечного объема с вершинами обоих типов.
Библиография: 23 названия.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.