Mesenchymal stem cells (MSCs) and osteoblasts respond to the surface electrical charge and topography of biomaterials. This work focuses on the connection between the roughness of calcium phosphate (CP) surfaces and their electrical potential (EP) at the micro- and nanoscales and the possible role of these parameters in jointly affecting human MSC osteogenic differentiation and maturation in vitro. A microarc CP coating was deposited on titanium substrates and characterized at the micro- and nanoscale. Human adult adipose-derived MSCs (hAMSCs) or prenatal stromal cells from the human lung (HLPSCs) were cultured on the CP surface to estimate MSC behavior. The roughness, nonuniform charge polarity, and EP of CP microarc coatings on a titanium substrate were shown to affect the osteogenic differentiation and maturation of hAMSCs and HLPSCs in vitro. The surface EP induced by the negative charge increased with increasing surface roughness at the microscale. The surface relief at the nanoscale had an impact on the sign of the EP. Negative electrical charges were mainly located within the micro- and nanosockets of the coating surface, whereas positive charges were detected predominantly at the nanorelief peaks. HLPSCs located in the sockets of the CP surface expressed the osteoblastic markers osteocalcin and alkaline phosphatase. The CP multilevel topography induced charge polarity and an EP and overall promoted the osteoblast phenotype of HLPSCs. The negative sign of the EP and its magnitude at the micro- and nanosockets might be sensitive factors that can trigger osteoblastic differentiation and maturation of human stromal cells.
4-oxo-4H-pyran-2.6-dicarboxylic acid (chelidonic acid, ChA) in the native state and in the complex with calcium [Ca(ChA)(H2O)3], named saucalchelin (CaChA), was isolated from the extract of Saussurea controversa leaves for the first time for the Asteraceae family. The structure of ChA was determined by NMR, MS and confirmed by X-ray analysis of its monomethyl ester, and CaChA was described by IR, ICP-MS, CHN analysis. The yield of ChA and CaChA was 45 mg/g and 70 mg/g of extract, respectively. The osteogenic activity of ChA, n-monobutyl ester of chelidonic acid, and CaChA has been studied in vitro in a 21-day culture of human adipose-derived multipotent mesenchymal stromal cells (hAMMSCs) in a standard nutrient medium without osteogenic supplements. CaChA significantly stimulated the growth of cell mass and differentiation of hAMMSCs into osteoblasts with subsequent mineralization of the culture and it may be a promising substance for accelerating bone tissue regeneration and engineering.
The Cell-IQ continuous surveillance system allowed us to establish the following changes in a 14- day culture in vitro: a twofold suppression of the directional migration of multipotent mesenchymal stromal cells of human adipose tissue (MMSC-AT) towards the samples with a microarc calcium phosphate (CP) coating from synthetic hydroxyapatite; a tenfold decrease in the cell mass on the interphase with the samples, which was accompanied by a slight reduction in the expression of membrane determinants of stromal stem cells; and an enhancement of their osteogenic differentiation (osteocalcin secretion and mineralized matrix formation) on the 21st day of the study. Calcium phosphate particles, but not the calcium and phosphorus ions, may trigger the phenotypic transformation of the MMSC-AT behavior in vitro.
Chronic inflammation may not begin with local tissue disorders, such as hypoxia, but with the accumulation of critically activated macrophages in one site. The purpose of this review is to analyze the data reported in the scientific literature on the features of the functions of macrophages and their contributions to the development of pathology in various tissues during aseptic inflammation in obese subjects. In individuals with obesity, increased migration of monocytes from the peripheral blood to various tissues, the proliferation of resident macrophages and a change in the balance between alternatively activated anti-inflammatory macrophages (M2) and pro-inflammatory classically activated macrophages (M1) towards the latter have been observed. The primary cause of some metabolic pathologies has been precisely identified as the recruitment of macrophages with an altered phenotype, which is probably typical for many other pathologies. Recent studies have identified phenotypes, such as metabolically activated M (MMe), oxidized (Mox), hemoglobin-related macrophages (Mhem and MHb), M4 and neuroimmunological macrophages (NAM, SAM), which directly and indirectly affect energy metabolism. The high heterogeneity of macrophages in tissues contributes to the involvement of these cells in the development of a wide range of immune responses, including pathological ones. The replenishment of tissue-specific macrophages occurs at the expense of infiltrating monocyte-derived macrophages (MoMFs) in the pathological process. The origin of MoMFs from a general precursor retains their common regulatory mechanisms and similar sensitivity to regulatory stimuli. This makes it possible to find universal approaches to the effect on these cells and, as a consequence, universal approaches for the treatment of various pathological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.