The authors deposited thin films of tin oxide on substrates of silicon and stainless steel by using atomic layer deposition (ALD) with tetraethyltin precursors. In this process, the authors used various coreactants such as water, oxygen, remote oxygen plasma, hydrogen peroxide, and ozone. The growth rates of films were studied as functions of the deposition temperature, the pulse times of the precursor and coreactant, and the number of ALD cycles, and the optimal growth conditions were determined. The film growth rates were found to be 0.025, 0.045, and 0.07 nm per cycle within the optimal growth conditions and ALD temperature windows for H2O2, O3, and O2 plasma, respectively. Using H2O or O2 did not prompt film growth. The films deposited using O3 and H2O2 had good continuity and low roughness, while the morphology of a coating prepared using oxygen plasma depended greatly on the deposition temperature. The films produced at temperatures below 300 °C were amorphous, irrespective of the coreactant used. X-ray photoelectron spectroscopy revealed that the samples mainly contained tin in the +4 oxidation state. The films deposited on stainless steel had high reversible capacity above 900 mA h g−1, exceptional cycleability, and good electrochemical performance as anodes for lithium-ion batteries.
In the search for novel anode materials for lithium-ion batteries (LIBs), organic electrode materials have recently attracted substantial attention and seem to be the next preferred candidates for use as high-performance anode materials in rechargeable LIBs due to their low cost, high theoretical capacity, structural diversity, environmental friendliness, and facile synthesis. Up to now, the electrochemical properties of numerous organic compounds with different functional groups (carbonyl, azo, sulfur, imine, etc.) have been thoroughly explored as anode materials for LIBs, dividing organic anode materials into four main classes: organic carbonyl compounds, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and organic compounds with nitrogen-containing groups. In this review, an overview of the recent progress in organic anodes is provided. The electrochemical performances of different organic anode materials are compared, revealing the advantages and disadvantages of each class of organic materials in both research and commercial applications. Afterward, the practical applications of some organic anode materials in full cells of LIBs are provided. Finally, some techniques to address significant issues, such as poor electronic conductivity, low discharge voltage, and undesired dissolution of active organic anode material into typical organic electrolytes, are discussed. This paper will guide the study of more efficient organic compounds that can be employed as high-performance anode materials in LIBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.