PMT may confound the interpretation of immediate postoperative outcome. Follow-up is recommended to definitely evaluate surgical results.
Despite the introduction of modern methods of treatment, the creation of new generations of antibacterial agents, and the constant improvement of aseptic and antiseptic methods, the treatment of purulent–inflammatory processes remains one of the most complex and urgent problems in veterinary practice. The article presents the results of the isolation of indigenous microbiota from various biotopes of healthy cats, as well as the study of their biological marker properties for the selection of the most optimal strains in probiotic medicines for the control of surgical infections. It was demonstrated that isolated cultures of bifidobacteria and lactobacilli, which we isolated, revealed high sensitivity to antibiotics of the β-lactam group (excepting L. acidophilus No. 24, L. plantarum “Victoria” No. 22, L. rhamnosus No. 5, L. rhamnosus No. 20, and L. rhamnosus No. 26, which showed a significant variability in sensitivity to antibacterial drugs of this group, indicating the great potential of these microorganisms) and resistance to aminoglycosides, lincosamides, and fluoroquinolones (with the exception of gatifloxacin, which showed high efficiency in relation to all lactic acid microorganisms). The adhesive properties of the isolated lactobacteria and bifidobacteria were variable, even within the same species. It was found that the B. adolescentis No. 23 strain of the Bifidobacterium genus, as well as the L. plantarum No. 8, L. plantarum “Victoria” No. 22, L. rhamnosus No. 6, L. rhamnosus No. 26, L. acidophilus No. 12, and L. acidophilus No. 24 strains of the Lactobacillus genus had the highest adhesive activity. Thus, when conducting a detailed analysis of the biological marker properties of candidate cultures (determining their sensitivity to antimicrobial agents, studying the adhesive properties, and antagonistic activity in relation to causative agents of surgical infection in cats), it was found that the most promising are L. plantarum “Victoria” No. 22, L. rhamnosus No. 26, and L. acidophilus No. 24.
Background and Aim: Mastitis is one of the most important diseases of cows and the most expensive pathology for the dairy industry. Therefore, this study was conducted to explore the role of microorganisms isolated from cows with mastitis in the formation of biofilms under the conditions of farm biogeocenosis in the Moscow region. Materials and Methods: Periodic visits to 12 farms in the Moscow region were conducted to explore the microbial profile of the udder of cows with mastitis. During the visits, 103 milk samples from sick animals were collected and examined. Through microbiological analyses, 486 cultures of microorganisms were identified, which are assigned to 11 genera. Mastitis in cows is caused not only by a single pathogen but also by microbial associations, which included two to seven microbial isolates. Results: It was observed that 309 isolates (63.6%) from the total number of isolated microorganisms could form a biofilm. The ability to form biofilms was most frequently observed in Staphylococcus aureus (18.8%), Escherichia coli (11.9%), and Staphylococcus uberis (11.7%) cultures from the total number of biofilm-forming microbial cultures. Low biofilm-forming ability among the isolated microorganisms was found in lactobacilli, wherein only 20 (22.5%) Lactobacillus strains had the ability to form biofilms. The isolated microorganisms exhibited different sensitivities to antimicrobial agents, which cause difficulty in selecting an antimicrobial agent that would act on all aspects of the parasitocenosis. Conclusion: A high proportion of microorganisms isolated from cows with mastitis have the ability to form biofilms. The isolated microorganisms exhibited different and highly heterogeneous sensitivity to the action of antimicrobial drugs. This causes difficulty in using these tools for the effective control of mastitis in cows, which is frequently caused by pathogenic associations of microbial biofilms. Therefore, it is important to explore novel and more effective methods to combat this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.