We study the problem of determining time-optimal control of in-plane rendezvous transfer of spacecraft with low transversal thrust. We use the Pontryagin maximum principle to determine the optimal control program. Motion is considered in the vehicle centric system with linearized equations. We recognize secular and periodic components of relative motion. Motion control is accomplished by the reversal of the thrust acceleration component. We study the general problem controlling the periodic and secular components at the same time (joint optimal control program). Also we study partial problems determining separate control programs for secular and periodic components of planar motion. Solving partial problems made it possible to determine the structure of the joint optimal control program. We found that the adjustment of secular motion components contains no more than two phases of constant acceleration. The adjustment of periodic motion components consists of a sequence of boost and deceleration phases, the number of which in a single pass does not exceed three.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.