The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic Interstellar Medium) survey used the APEX telescope to map 84 deg2 of the Galactic plane between ℓ = −60○ and ℓ = +31○ in several molecular transitions, including 13CO (2 – 1) and C18O (2 – 1), thus probing the moderately dense (∼103 cm−3) component of the interstellar medium. With an angular resolution of 30″ and a typical 1σ sensitivity of 0.8–1.0 K at 0.25 km s−1 velocity resolution, it gives access to a wide range of structures, from individual star-forming clumps to giant molecular clouds and complexes. The coverage includes a good fraction of the first and fourth Galactic quadrants, allowing us to constrain the large scale distribution of cold molecular gas in the inner Galaxy. In this paper we provide an updated overview of the full survey and the data reduction procedures used. We also assess the quality of these data and describe the data products that are being made publicly available as part of this first data release (DR1). We present integrated maps and position-velocity maps of the molecular gas and use these to investigate the correlation between the molecular gas and the large scale structural features of the Milky Way such as the spiral arms, Galactic bar and Galactic centre. We find that approximately 60 per cent of the molecular gas is associated with the spiral arms and these appear as strong intensity peaks in the derived Galactocentric distribution. We also find strong peaks in intensity at specific longitudes that correspond to the Galactic centre and well known star forming complexes, revealing that the 13CO emission is concentrated in a small number of complexes rather than evenly distributed along spiral arms.
We use the 13CO (2-1) emission from the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic InterStellar Medium) high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the Spectral Clustering for Interstellar Molecular Emission Segmentation (scimes) algorithm. This work compiles a cloud catalogue with a total of 10663 molecular clouds, 10300 of which we were able to assign distances and compute physical properties. We study some of the global properties of clouds using a science sample, consisting of 6664 well resolved sources and for which the distance estimates are reliable. In particular, we compare the scaling relations retrieved from SEDIGISM to those of other surveys, and we explore the properties of clouds with and without high-mass star formation. Our results suggest that there is no single global property of a cloud that determines its ability to form massive stars, although we find combined trends of increasing mass, size, surface density and velocity dispersion for the sub-sample of clouds with ongoing high-mass star formation. We then isolate the most extreme clouds in the SEDIGISM sample (i.e. clouds in the tails of the distributions) to look at their overall Galactic distribution, in search for hints of environmental effects. We find that, for most properties, the Galactic distribution of the most extreme clouds is only marginally different to that of the global cloud population. The Galactic distribution of the largest clouds, the turbulent clouds and the high-mass star-forming clouds are those that deviate most significantly from the global cloud population. We also find that the least dynamically active clouds (with low velocity dispersion or low virial parameter) are situated further afield, mostly in the least populated areas. However, we suspect that part of these trends may be affected by some observational biases (such as completeness and survey limitations), and thus require further follow up work in order to be confirmed.
Context. The formation processes of massive stars are still unclear but a picture is emerging involving accretion disks and molecular outflows in what appears to be a scaled-up version of low-mass star formation. A census of outflow activity towards high-mass star-forming clumps in various evolutionary stages has the potential to shed light on high-mass star formation. Aims. We conducted an outflow survey towards ATLASGAL (APEX Telescope Large Area Survey of the Galaxy) clumps, using SEDIGISM (structure, Excitation, and Dynamics of the Inner Galactic InterStellar Medium) data and aimed to obtain a large sample of clumps exhibiting outflow activity in different evolutionary stages. Methods. We identify the high-velocity wings of the 13 CO lines, indicating outflow activity, toward ATLASGAL clumps by (1) extracting the simultaneously observed 13 CO (2 -1) and C 18 O (2 -1) spectra from SEDIGISM, and (2) subtracting Gaussian fits to the scaled C 18 O (core emission) from the 13 CO line after considering opacity broadening. Results. We have detected high-velocity gas towards 1192 clumps out of a total sample of 2052 corresponding to an overall detection rate of 58%. Outflow activity has been detected in the earliest (apparently) quiescent clumps (i.e., 70µm weak), to the most evolved H ii region stages i.e., 8µm bright with tracers of massive star formation. The detection rate increases as a function of evolution (quiescent=51%, protostellar=47%, YSO = 57%, UC H ii regions = 76%). Conclusions. Our sample is the largest outflow sample identified so far. The high-detection rate from this large sample is consistent with the results of similar studies reported in the literature and supports the scenario that outflows are a ubiquitous feature of highmass star formation. The lower detection rate in early evolutionary stages may be due to the fact that outflows in the early stages are weak and difficult to detect. We obtain a statistically significant sample of outflow clumps for every evolutionary stage, especially for outflow clumps in the earliest stage (i.e., 70 µm dark). The detections of outflows in the 70 µm-dark clumps suggest that the absence of 70 µm emission is not a robust indicator of starless/pre-stellar cores.
Filaments are a ubiquitous morphological feature of the molecular interstellar medium and are identified as sites of star formation. In recent years, more than 100 large-scale filaments (with a length > 10 pc) have been observed in the inner Milky Way. As they appear linked to Galactic dynamics, studying those structures represents an opportunity to link kiloparsec-scale phenomena to the physics of star formation, which operates on much smaller scales. In this Letter, we use newly acquired Outer Galaxy High Resolution Survey (OGHReS) 12CO(2-1) data to demonstrate that a significant number of large-scale filaments are present in the outer Galaxy as well. The 37 filaments identified appear tightly associated with inter-arm regions. In addition, their masses and linear masses are, on average, one order of magnitude lower than similar-sized molecular filaments located in the inner Galaxy, showing that Milky Way dynamics is able to create very elongated features in spite of the lower gas supply in the Galactic outskirts.
Context. Understanding the effect of feedback, interaction of young massive stars with their parental giant molecular clouds, is of central importance for studies of the interstellar medium and star formation. Aims. We observed the G305 star-forming complex in the J = 3–2 lines of 12CO and 13CO to investigate how molecular gas surrounding the central stellar clusters is being impacted by feedback. Methods. The Atacama Pathfinder EXperiment (APEX) telescope’s Large APEX sub-Millimeter Array (LAsMA) multibeam receiver was used to observe the region. Excitation temperatures and column density maps were produced. Combining our data with data from the structure, excitation, and dynamics of the inner Galactic interstellar medium survey resulted in a 13CO J = 3−2∕2−1 excitation map. To verify whether feedback from stellar clusters is responsible for exciting the gas, the distribution of CO excitation was compared with that of 8 μm emission imaged with Spitzer, which is dominated by UV-excited emission from polycyclic aromatic hydrocarbons. Line centroid velocities, as well as stacked line profiles were examined to investigate the effect of feedback on the gas dynamics. Results. Line profiles along radially outward directions demonstrate that the excitation temperature and 13CO J = 3−2∕2−1 ratio increase steeply by factors of ~2–3 at the edge of the denser gas traced by 13CO that faces the hot stars at the center of the complex and steadily decreases away from it. The column density also increases at the leading edge, but it does not always decrease steadily outward. Regions with a higher 8 μm flux have higher median excitation temperatures, column densities, and 13CO J = 3−2∕2−1 ratio. The centroid velocity probability distribution function of the region shows exponential wings, indicative of turbulence driven by strong stellar winds. Stacked spectra in regions with stronger feedback have higher skewness and narrower peaks with pronounced wings compared to regions with weaker feedback. Conclusions. Feedback from the stellar cluster in G305 has demonstrable effects on the excitation as well as on the dynamics of the giant molecular cloud.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.