KEY WOrtDS: trigonometric polynomials in several variables, Temlyakov conjecture.We establish the following theorem. such that the inequalities 2 < 116klla, 11,Skll~o < 6, k = 1, ...,,~,are satisfled, where II " lip is the norm on the space LP(0, 2~r), 1 < p < oo.Note that the polynomials were used by Bochkarev to refine a result due to Olevskii (see [1, Theorem 3.3]). Our interest in the construction of trigonometric polynomials with properties (2) and (3) was originally motivated by an attempt to prove Temlyakov's conjecture about trigonometric polynomials in several variables (see [2,3] for details). However, roughly speaking, the result obtained here only shows that this conjecture cannot be proved by straightforward reduction to a one-dimensional problem.Proof of the theorem. Note that for all trigonometric polynomials of the form (1)
Два декамплинг-неравенства доказаны для функций гауссовских векторов. В обоих случаях оказалось, что случай линейных функций является экстремальным. В доказательствах используются некоторые свойства полиномов Вика (Эрмита), а также уточненная версия теоремы Шура о покомпонентном произведении положительно определенных матриц. Библиография: 5 названий.
Приводится пример тригонометрических полиномов с экстремально малой равномерной нормой. Этим примером показывается граница возможности обобщения неравенства Сидона для лакунарных полиномов в некотором направлении.
Библиография: 9 названий.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.