A two-dimensional in space fractional diffusion equation with functional delay of a general form is considered. For this problem, the Crank-Nicolson method is constructed, based on shifted Grunwald-Letnikov formulas for approximating fractional derivatives with respect to each spatial variable and using piecewise linear interpolation of discrete history with continuation extrapolation to take into account the delay effect. The Douglas scheme is used to reduce the emerging high-dimensional system to tridiagonal systems. The residual of the method is investigated. To obtain the order of the method, we reduce the systems to constructions of the general difference scheme with heredity. A theorem on the second order of convergence of the method in time and space steps is proved. The results of numerical experiments are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.