Quadcopters can continuously observe ocean surface with high spatial resolution from relatively low altitude, albeit with certain limitations of their usage. Remote sensing from quadcopters provides unprecedented ability to study small river plumes formed in the coastal sea. The main goal of the current work is to describe structure and temporal variability of small river plumes on small spatial and temporal scales, which are limitedly covered by previous studies. We analyze optical imagery and video records acquired by quadcopters and accompanied by synchronous in situ measurements and satellite observations within the Kodor and Bzyp plumes, which are located in the northeastern part of the Black Sea. We describe extremely rapid response of these river plume to energetic rotating coastal eddies. We reveal several types of internal waves within these river plumes, measure their spatial and dynamical characteristics, and identify mechanisms of their generation. We suggest a new mechanism of formation of undulate fronts between small river plumes and ambient sea, which induces energetic lateral mixing across these fronts. The results reported in this study are addressed for the first time as previous related works were mainly limited by low spatial and/or temporal resolution of in situ measurements and satellite imagery.
The freshwater fauna of nine caves in central Abkhazia, western Caucasus, revealed 35 species of stygobionts, including 15 new species to be described elsewhere. The number of species per station increased from the depth towards the entrance in caves Golova Otapa and Abrskila, becoming the highest in the epigean part. In both caves, two abundance peaks of aquatic invertebrates were registered: one in the entrance area, associated with the development of amphibiotic insect larvae, the other in the depths due to the high numbers of stygobionts. In Cave New Athos, the highest species richness and abundance were observed in large lakes. In caves Golova Otapa and Abrskila, two faunistic complexes with complementary distributions were found, the first due to amphibiotic insects in the cave entrance area, the second one composed of stygobionts in the deep areas. The impact of anthropogenic factors on aquatic cave communities was also noted. The stygobiotic faunas of all caves studied were clearly divided into three groups, following the number of river valleys in which they were situated. The stygobiont faunas of the caves located within one river valley appeared to be 50% similar. In contrast, the fauna composition of the stygobionts from caves situated in different valleys shared not more than 12% species in common. Stygobiotic shrimps and gastropod mollusks show profound local endemism. Stygobiotic Amphipoda penetrating the ground waters revealed wide distributions between cave systems within a single karst massif.
RESEARCH ARTICLE
Subterranean BiologyPublished by The International Society for Subterranean Biology A peer-reviewed open-access journal Elena S. Chertoprud et al. / Subterranean Biology 18: 49-70 (2016) 50
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.