Thermal stability of metastable silicon phases produced by nanoindentation J. Appl. Phys. 95, 2725 (2004); 10.1063/1.1642739High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation
This paper supplies new interpretation of nanoindentation data for silicon, germanium, and gallium arsenide based on Raman microanalysis of indentations. For the first time, Raman microspectroscopy analysis of semiconductors within nanoindentations is reported. The given analysis of the load-displacement curves shows that depth-sensing indentation can be used as a tool for identification of pressure-induced phase transformations. Volume change upon reverse phase transformation of metallic phases results either in a pop-out (or a kink-back) or in a slope change (elbow) of the unloading part of the load-displacement curve. Broad and asymmetric hysteresis loops of changing width, as well as changing slope of the elastic part of the loading curve in cyclic indentation can be used for confirmation of a phase transformation during indentation. Metallization pressure can be determined as average contact pressure (Meyer's hardness) for the yield point on the loading part of the load-displacement curve. The pressure of the reverse transformation of the metallic phase can be measured from pop-out or elbow on the unloading part of the diagram. For materials with phase transformations less pronounced than in Si, replotting of the loaddisplacement curves as average contact pressure versus relative indentation depth is required to determine the transformation pressures and/or improve the accuracy of data interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.