Vascular calcification or ectopic mineralization in blood vessels is an active, cell-regulated process, increasingly recognized as a general cardiovascular risk factor. Ectopic artery mineralization is frequently accompanied by decreased bone mineral density or disturbed bone turnover and development of the osteoporosis. The latest data support the correlation of osteoporosis and atherosclerosis, indicating the parallel progression of two tissue destruction processes with increased fatal and nonfatal coronary events, as well as a higher fracture risk. Patients with osteoporosis, have a higher risk of cardiovascular diseases than subjects with normal bone. Many proteins responsible for bone formation and resorption have been identified in the arterial wall. Vascular calcification includes mostly osteogenic and, to a lesser extent chondrogenic differentiation of osteoblasts and osteoclast-like cells. It has been shown that many of the regulators of bone formation and resorption some bone structural proteins, such as osteoprotegerin (OPG), receptor activator of nuclear factor-κB ligand (RANKL) are also expressed in the atherosclerotic plaque. When RANKL binds to RANK, osteoclasts are activated and bone resorption occurs and processes of vascular calcification become also activated. OPG, protein homologue to receptor activator of nuclear factor-κB (RANK), can bind to RANKL, blocking the binding of RANKL to RANK, that results in inhibition of differentiation of preosteoclasts to mature osteoclasts, lower osteoclast capacity for resorption of bone mineral matrix, and development vascular calcification. The latest data supports that cathepsin K, a cysteine protease, can efficiently degrade type I and II collagen, both of which are major matrix components of the bone and atherosclerotic plaque. These findings further underscore the potential of cathepsin K as a target for novel molecules to treat osteoporosis and atherosclerosis. Thus, the discovery of the cytokine RANKL-RANK-OPG system and significant role of the cathepsin K in the process of bone remodeling, vascular calcification and atherosclerosis has made progress in understanding the mechanisms of disease development and possibly to develop new dual therapies. New therapies for osteoporosis and atherosclerosis that may potentially improve or augment existing treatments include the recently approved anti-receptor activator of NF-κB-ligand monoclonal antibody fms (denosumab) and the cathepsin K inhibitor odanacatib, presently in the late stage of clinical development.
In a review of the literature reflects the modern understanding of the cellular-molecular mechanism development of osteoporosis. Reflects the importance of cytokine RANKL-RANK-OPG sistem and Wnt/β-catenin signaling pathway in the development process of osteoblasto- and osteoclastogenesis. Noting the key role in the process of bone formation a number of molecules of cell signaling pathway and their antagonists are of interest as a target molecule to search for new drugs treatment for osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.