The chemical kinetics of processes of thermal transformations of carbon-containing media was studied at high-temperature processing (2000 K ≤ T ≤ 5000 K) in the chamber of a plasma-jet reactor using water vapor as an oxidizer. The chemical reactions rate was calculated according to the method of determining the kinetic constants of the process of gasification of coal-water fuel. The influence of the temperature of the gaseous environment in the chamber on the time of complete carbon conversion of the fuel particles is established. An example of calculating the parameters of the gasification process of coke residue particles with a size of (5 - 20)·10-5 m with an oxidizer excess coefficient α = 0.45 and fuel consumption mf = 100 kg/hr is given. The expediency of the process of vapor-plasma gasification at the temperature of gases in the reactor chamber up to 3000 K is shown.
The analysis of the process of thermal transformations of carbon environment at high temperature (T = 2000 K) processing in a chamber of a plasma-jet reactor with the use of a water vaporizer as an oxidizer is done. The influence of heat exchange parameters on the heating of coal particles of different sizes is established. The method of mathematical modeling of the process of conversion of dispersed carbon raw materials in a stream of water plasma at a temperature in the reaction chamber Tg = 2000 - 5000 K was developed. The technique allows to determine the influence of thermal and kinetic parameters on the process of heat exchange between coal particle and a steam-plasma environment. A conversion time of a coal particle into a gaseous state is determined. It is the time that laid the foundation for calculating the main geometric and regime parameters of the reactor. The expediency of increasing the temperature of the gases in the reactor Tg = 3000 K is proved. This determines the minimum time for conversion of carbon under the combined influence of convective and radiation heat exchanges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.