В статье уточнена скорость роста собственных значений одной спектральной задачи четвертого порядка с негладкими решениями. Анализ задачи опирается на предложенный Ю. В. Покорным поточечный подход, показавший свою эффективность при изучении линейных граничных задач второго и четвертого порядков с непрерывными решениями.
В работе получены достаточные условия существования решения краевой задачи второго порядка с разрывными решениями и сильной нелинейностью. При анализе решений краевой задачи мы используем поточечный подход, предложенный Ю. В. Покорным и показавший свою эффективность при изучении задач второго порядка с негладкими решениями. На основе оценок функции Грина граничной задачи, полученных ранее другими авторами, удалось показать, что оператор, обращающий изучаемую нелинейную задачу, представимый в виде суперпозиции вполне непрерывного и непрерывного операторов, действует из конуса неотрицательных непрерывных функций в более узкое множество. Последнее и позволяет доказать существование решения у нелинейной краевой задачи с привлечением теории пространств с конусом.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.