Категорія конфлікту охоплює не лише війну, але й також злочинність, судочинство, трудові спори (зокрема страйки та локаути). Теорія обміну і теорія конфлікту є рівнозначними гілками економічного аналізу: теорія обміну основана на контрактних і взаємних виграшах, а теорія конфлікту − на суперництві за асиметричну перевагу. Заслуговують уваги різноманітні аналітичні варіанти моделювання конфліктної рівноваги, наприклад, для фактичних військових дій чи озброєного мирного співіснування. Можна показати, що вибір між розгортанням і згортанням конфлікту визначається перевагами, можливостями і сприйняттями. Технологію конфлікту можна вважати певним фактором економічної діяльності. Живі істоти скрізь конкурують за засоби для свого існування. Конкуренцію, яка стає достатньо інтенсивною, називають конфліктом, коли суперники намагаються нашкодити, вивести з ладу чи зруйнувати один одного.
Всі економічні моделі мають певні спільні риси: мають передбачатися оптимізуючі рішення на рівні осіб, які приймають рішення, та результуюча рівновага внаслідок взаємодії всіх цих рішень на агрегованому рівні. Крім того, рішення мають підлягати деякому ресурсному обмеженню. Теорія конфлікту є не просто однією з гілок економічного аналізу чи набором схожих тем злочинності, трудових спорів, судочинства, а мікроекономічним підходом до досягнення односторонньої переваги замість взаємних переваг. Якщо теорія макроекономічного аналізу і теорія мікроекономічного аналізу передбачають звичайні процеси виробництва, за допомогою яких ресурсні входи перетворюються у бажані товари, то теорія конфлікту передбачає технологію протиборства і боротьби. У процесі конфлікту роль входів виконують зусилля військових дій, які генерують виходи у формі кінцевого розподілу ресурсів і доходів між усіма сторонами.
The trends of European energy markets depend on the forecasting of fundamental price based on the modeling approaches for short-term physical electricity markets, including day-ahead trade markets for energy power, intra-day trade markets for energy power, trade for balancing or reserving energy capacity. The typical hierarchy of modeling on modern market consists of the fundamental model of long-term planning to years ahead (where stochastic aggregation or disaggregation for price forecasting takes place), the model of medium-term planning to months ahead (where the stochastic modeling of semi aggregated hydro energy with generation of cuts, at prices given, takes place), and the model of short-term planning to weeks ahead (where the deterministic modeling of disaggregated hydro energy, at prices given, takes place). The model of long-term planning is a fundamental one in the sense of a detailed and adequate description of market, supply, demand, and network topology. The models of medium-term and short-term planning are typical ones for regional markets. Energy storage technologies have changed modern energy markets. If the traditional power grids have worked like ultimate just-in-time supply chains without stocks and with almost immediate delivery of good (electricity), then modernized power grids will create new opportunities for their optimization and operation. The new power grids will resemble common supply chains with stocks (in the form of large-scale batteries and other energy storage devices), supply uncertainty (from variable power sources such as wind and solar power plants), high customer service requirements (under deregulating of the electricity market and entering of new competitors to the market), the newest pricing schemes (due to the new communication infrastructure allowing information transmission for real time pricing). An energy storage system can be viewed as a system of stocks, where the product stored is the energy instead of a traditional good. Then a series of models of energy storage management is based on the fundamental theory of inventory optimization. On the other hand, energy storage systems usually have more room for decision: in addition to the decision to purchase a product (as in classic inventory models), there may be decisions about the quantity and the price of product sales.
The interaction of the government financial system, the state banking system, and the investment system of renewable photo-voltaic (PV) power generation equipment can lead to sustainable strategies of these three parties (including government subsi-dies and bank loans) in the distributed state PV-market depending on its level of development. However, the instability of power output, caused by the variability and changing nature of renewable energy sources, poses challenges for large-scale power dispatch. In addition, the development of the PV-industry has been constrained by a long period of return on investment in solar photovoltaics and the need for large initial investments. With the rapid development of the sharing economy, the provision of financial support and the sharing of investment risks among investors in the PV-energy have become key means of promoting the PV-industry. State incentive policy was considered an effective approach to significant promotion of PV-systems. Government subsidies reduce the need for large initial investments, and market mechanisms, such as feed-in tariffs and tax rebates, increase return on investment and reduce payback periods. In addition, bank loans are considered another major source of external financing for the development of the PV-industry. Third-party financing with appropriate risk-sharing is considered an effective approach to promote the use of photovoltaic technologies. As government subsidies put pressure on the state budget and bank loans require banks to take significant credit risks, there are clear barriers to governments and banks supporting the develop-ment of the PV-industry. By 2022, the issues of computing such targeted government subsidies and bank loans with limited credit risks, which maximize incentives for the diffusion of PV-technologies, remain underdeveloped. The current important issues for suggested numerical studying and modeling are: can government subsidies and bank loans significantly contribute to the diffusion of PV-installations at various levels of the PV-market development; what evolutionarily stable states will be formed at different levels of the PV-market development; how the volume of government subsidies, the share of bank loans, the capacity of PV-installations by investors will affect the evolutionary trajectories of the all PV-market parameters and the transformation of various evolutionarily stable states. To do this, numerical modeling is performed to study the dynamic evolutionary trajectories at different levels of the PV-market development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.