Исследуются область применимости, арсенал возможностей и способы идентификации и настройки нелинейного определяющего соотношения типа Максвелла для вязкоупругопластичных материалов с двумя произвольными материальными функциями и двумя параметрами (в случае одноосного изотермического нагружения). Оно нацелено на описание комплекса основных реологических эффектов, типичных для реономных материалов, обладающих наследственностью, высокой скоростной чувствительностью и разносопротивляемостью, для которых характерны установившаяся ползучесть, стадия течения при постоянном напряжении и возрастание податливости, скоростей диссипации, релаксации, ползучести и рэтчетинга и скоростной чувствительности с увеличением температуры. К ним относятся, в частности, многие полимеры, их расплавы и растворы, композиты, твердые топлива, асфальтобетоны, титановые и алюминиевые сплавы, углеродные и керамические материалы при высоких температурах и др.
Для учета влияния температуры на механическое поведение материалов (при изотермических процессах) два материальных параметра модели (коэффициент вязкости и «модуль упругости») рассматриваются как функции температуры. Найдены ограничения на свойства этих функций, необходимые и достаточные для адекватного описания качественных характеристик влияния температуры на экспериментальные кривые ползучести, релаксации, деформирования с постоянными скоростями, ползучести при ступенчатом нагружении, на касательный модуль и предел текучести, скоростную чувствительность и скорость накопления пластической деформации, типичных для стабильных вязкоупругопластичных материалов в изотермических квазистатических испытаниях. Они получены в результате аналитического изучения свойств кривых релаксации, ползучести и деформирования, порождаемых определяющим соотношением типа Максвелла с произвольными материальными функциями, и их сопоставления с типичными свойствами экспериментальных кривых реономных материалов. Доказано, что коэффициент вязкости, «модуль упругости» и их отношение (время релаксации ассоциированной линейной модели Максвелла) должны быть убывающими функциями температуры, и это обеспечивает адекватное качественное описание десятка наблюдаемых базовых термомеханических эффектов, свидетельствующих о возрастании податливости материалов (в частности, убывании касательного модуля и предела текучести), скоростей релаксации, ползучести и рэтчетинга и скоростной чувствительности с ростом температуры.