С помощью метода обратной задачи рассеяния подробно обсуждается нелокальное нелинейное уравнение Шредингера с производной в случае нулевых граничных условий на бесконечности. Для прямой задачи рассеяния изучаются свойства аналитичности, симметрии, асимптотика решений Йоста и коэффициентов рассеяния, а также распределение точек дискретного спектра. Симметрии рассматриваемого уравнения приводят к тому, что дискретный спектр задачи рассеяния не такой, как для других уравнений типа нелинейного уравнения Шредингера с производной. Обратная задача рассеяния решается методом матричной задачи Римана-Гильберта. Представлены формула реконструкции, следовая формула и явные решения. В случае безотражательного потенциала при частных значениях параметров получены солитонные решения нелокального нелинейного уравнения Шредингера с производной, которые могут иметь особенности.
Предложен новый подход к нахождению многосолитонных решений уравнения Дегаспериса-Прочези и его коротковолнового предела, основанный на сочетании преобразования взаимности с преобразованием Дарбу для отрицательного потока иерархии Каупа-Купершмидта. В частности, показано, что различный выбор параметров солитонов приводит к двум различным типам солитонных решений для уравнения Дегаспериса-Прочези.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.