The features of the properties and creation of nanocomposite metal oxide materials, especially TiO2, ZnO, SnO2, ZrO2, and Fe3O4, and their applications for ecology are considered in the article. It is shown that nanomaterials based on them are very promising for use in the ecological direction, especially as sorbents, photocatalysts, and sensitive layers of gas sensors. The crystallochemical characteristics, surface structure, and surface phenomena that occur when they enter the water and air environment are given for these metal oxides, and it is shown that they play a significant role in obtaining the sorption and catalytic characteristics of these nanomaterials. Particular attention is paid to the dispersion and morphology of metal oxide particles by which their physical and chemical properties can be controlled. Synthesis methods of metal oxide nanomaterials and ways for creating of nanocomposites based on them are characterized, and it is noted that there are many methods for obtaining individual nanoparticles of metal oxides with certain properties. The main task is the correct selection and testing of parameters. The prospects for the production of metal oxide nanocomposites and their application for environmental applications are noted, which will lead to a fundamentally new class of materials and new environmental technologies with their participation.
Magnetic composite sorbents based on saponite clays with different content of magnetite (2–7 wt%.) were synthesized. The samples were analyzed by X-ray diffraction methods, and it was found that the Fe3O4 in composites is in the nanorange. It has been shown that the magnetic nanocomposites have more developed microporosity and mesoporosity compared to saponite clay. The sorption properties of magnetic nanocomposite sorbents were determined, and the results evidenced that their efficiency is significantly higher than the individual phases of the composite. It was shown that all waste composite magnetic sorbents are successfully removed from the water environment by magnetic separation.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
The effect of precursors on the characteristics of tin oxide obtained by chemical vapor deposition (CVD) method was investigated. The synthesis of nanosized tin(IV) oxide was carried out with the use of two different precursors: tin(II) oxalate obtained using tin chloride(II) and oxalic acid; tin(II) oxalate obtained using tin chloride(II); and ammonium oxalate. The synthesized tin(IV) oxide samples were studied by electron microscopy, X-ray diffraction and optical spectra. The lattice parameters of tin(IV) oxide samples were defined, the bandgap of samples were calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.