Magnetic composite sorbents based on saponite clays with different content of magnetite (2–7 wt%.) were synthesized. The samples were analyzed by X-ray diffraction methods, and it was found that the Fe3O4 in composites is in the nanorange. It has been shown that the magnetic nanocomposites have more developed microporosity and mesoporosity compared to saponite clay. The sorption properties of magnetic nanocomposite sorbents were determined, and the results evidenced that their efficiency is significantly higher than the individual phases of the composite. It was shown that all waste composite magnetic sorbents are successfully removed from the water environment by magnetic separation.
The features of the properties and creation of nanocomposite metal oxide materials, especially TiO2, ZnO, SnO2, ZrO2, and Fe3O4, and their applications for ecology are considered in the article. It is shown that nanomaterials based on them are very promising for use in the ecological direction, especially as sorbents, photocatalysts, and sensitive layers of gas sensors. The crystallochemical characteristics, surface structure, and surface phenomena that occur when they enter the water and air environment are given for these metal oxides, and it is shown that they play a significant role in obtaining the sorption and catalytic characteristics of these nanomaterials. Particular attention is paid to the dispersion and morphology of metal oxide particles by which their physical and chemical properties can be controlled. Synthesis methods of metal oxide nanomaterials and ways for creating of nanocomposites based on them are characterized, and it is noted that there are many methods for obtaining individual nanoparticles of metal oxides with certain properties. The main task is the correct selection and testing of parameters. The prospects for the production of metal oxide nanocomposites and their application for environmental applications are noted, which will lead to a fundamentally new class of materials and new environmental technologies with their participation.
The extensive application of antibiotics in human and veterinary medicine has led to their widespread occurrence in a natural aquatic environment. Global health crisis is associated with the fast development of antimicrobial resistance, as more and more infectious diseases cannot be treated more than once. Sulfamethoxazole, trimethoprim and ciprofloxacin are the most commonly detected antibiotics in water systems worldwide. The persistent and toxic nature of these antibiotics makes their elimination by conventional treatment methods at wastewater treatment plants almost impossible. The application of advanced oxidation processes and heterogeneous photocatalysis over TiO2-based materials is a promising solution. This highly efficient technology has the potential to be sustainable, cost-efficient and energy-efficient. A comprehensive review on the application of various TiO2-based photocatalysts for the degradation of sulfamethoxazole, trimethoprim and ciprofloxacin is focused on highlighting their photocatalytic performance under various reaction conditions (different amounts of pollutant and photocatalyst, pH, light source, reaction media, presence of inorganic ions, natural organic matter, oxidants). Mineralization efficiency and ecotoxicity of final products have been also considered. Further research needs have been presented based on the literature findings. Among them, design and development of highly efficient under sunlight, stable, recyclable and cost-effective TiO2-based materials; usage of real wastewaters for photocatalytic tests; and compulsory assessment of products ecotoxicity are the most important research tasks in order to meet requirements for industrial application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.