Ag3PO4-P(AM-co-MAA) composite microspheres were prepared by the combination of a polymeric microgel method and a reverse micelle technique. Novel silver-poly(acrylamide-co-methacrylic acid) [Ag-P(AM-co-MAA)] composite microspheres with sizes ranging in the tens of micrometers and containing a patterned surface as well as core/shell structures were prepared by the chemical reduction of Ag3PO4-P(AM-co-MAA) composite microspheres in ethanol. Energy dispersive X-ray (EDX) analysis revealed that the chemical composition of the"shell"is dominated by Ag, but the"core"is dominated by the template, P(AM-co-MAA). Scanning electron microscopy (SEM) results demonstrate that the surface morphology of the Ag-polymer composite microspheres is similar to that of their precursors and can be controlled to a certain extent by varying the composition of the template copolymer, the approaches and the amount of Ag3PO4 deposited. X-ray diffraction (XRD) indicated that the salt had been completely converted to Ag. Biological antimicrobial experiments showed that this kind of composites exhibit distinctive antibacterial activity toward Escherichia coli and Staphylococcus aureus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.