Small-sized zeolite ZSM-5 for a wide SiO2/Al2O3 ratio range was prepared using a small amount of colloidal silicalite-1 as the active seeds. The thus-prepared small-sized ZSM-5 samples have been characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption analysis, temperature-programmed ammonium desorption (NH3-TPD) analysis, and adsorbed pyridine infrared spectroscopy (Py-IR). The use of the active silicalite-1 seeds was effective in directing the reaction towards the formation of the MFI phase, avoiding the impure phases and reducing the crystal sizes. The prepared sample exhibited aggregated morphologies when a lower ratio of starting batch SiO2/Al2O3 (SiO2/Al2O3 ratio = 30) was used. The aggregates, with the size of ~500 nm, were formed with nano-sized primary crystals 50 nm in size, possessing large external surface area (84.9 m 2 •g −1 ) and secondary pore volume (0.22 cm 3 •g −1 ) and relatively regular mesopores. Different morphologies could be observed when the SiO2/Al2O3 ratio was increased (SiO2/Al2O3 ratio = 60-120). ZSM-5 with the size of 200 nm could be prepared, with the external surface area and the secondary pore volume being ~60 m 2 •g −1 and 0.10 cm 3 •g −1 , respectively. It should be highlighted that all the prepared samples could be directly ion-exchanged to obtain the acidic H-form samples without complete blocking of the micropores due to the low dose of the organic structure-directing agent. The obtained acidic H-form samples exhibited acidic properties similar to the samples ion-exchanged after calcination and the conventional ZSM-5 possessing similar SiO2/Al2O3 ratio, showing catalytic performance comparative to the catalytic conversion of methanol to olefins. Compared with conventional methods, this method largely reduced the use of organic templates and avoided the subsequent combustion before ion-exchange. The method is green and cost-effective, possessing wide potentials in the industrial processes.
No abstract
Ag3PO4-P(AM-co-MAA) composite microspheres were prepared by the combination of a polymeric microgel method and a reverse micelle technique. Novel silver-poly(acrylamide-co-methacrylic acid) [Ag-P(AM-co-MAA)] composite microspheres with sizes ranging in the tens of micrometers and containing a patterned surface as well as core/shell structures were prepared by the chemical reduction of Ag3PO4-P(AM-co-MAA) composite microspheres in ethanol. Energy dispersive X-ray (EDX) analysis revealed that the chemical composition of the"shell"is dominated by Ag, but the"core"is dominated by the template, P(AM-co-MAA). Scanning electron microscopy (SEM) results demonstrate that the surface morphology of the Ag-polymer composite microspheres is similar to that of their precursors and can be controlled to a certain extent by varying the composition of the template copolymer, the approaches and the amount of Ag3PO4 deposited. X-ray diffraction (XRD) indicated that the salt had been completely converted to Ag. Biological antimicrobial experiments showed that this kind of composites exhibit distinctive antibacterial activity toward Escherichia coli and Staphylococcus aureus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.